Advertisement

Long-Term Spatial–Temporal Characterization of Cloud-to-Ground Lightning in the Metropolitan Region of Rio de Janeiro

  • Tales Bernardes Paulucci
  • Gutemberg Borges França
  • Renata LibonatiEmail author
  • Alexandre M. Ramos
Article
  • 23 Downloads

Abstract

Remote-sensing techniques are currently the only means of collecting information to monitor the atmospheric dynamics of lightning from the regional to the national scales, allowing for the generation of homogeneous and long time series. Attempts to characterize the impacts of atmospheric discharge in Brazil presuppose an understanding of spatial and temporal lightning patterns. Despite the high frequency of lightning and significant disturbances caused in highly populated regions such as the metropolitan region of Rio de Janeiro (MRRJ), these phenomena are not well characterized when using a long-term contemporaneous dataset. Accordingly, this work focuses on the spatial and temporal variability of cloud-to-ground lightning in the metropolitan region of Rio de Janeiro, an area affected by a high level of atmospheric discharge every year. We performed a statistical analysis of lightning data taken from a lightning location system for the 16-year period of 2001–2016 and analysed characteristics such as polarity, peak currents, geographic distributions and diurnal, intra- and inter-annual variability. Extremely high levels of high activity were observed from 258,794 cloud-to-ground lightning events recorded over the analysed period and for 64.3% events occurring in summer, 20.5% events occurring in spring and 12.9%, and 2.3% events occurring in autumn and winter. The discharge events were predominantly negative (93.54% of the total). Peak levels of electrical activity were observed from roughly 18:00 to 19:00 local time, when there is more potential energy available for convection. The results of the spatial analysis reveal that most lightning observed over Rio de Janeiro derived from the orographic effect, which spurs the formation of convective storms along the southern part of the slope.

Keywords

Cloud to ground lightning thunderstorm flashes Southeastern Brazil Rio de Janeiro 

Notes

Acknowledgements

The authors are very grateful to Furnas electrical power company for providing the data used here. RL was supported by Serrapilheira Institute (Grant No. Serra-1708-15159).

References

  1. Boian, C., & Kirchhoff, V. W. J. H. (2004). Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America. Atmospheric Environment, 38(37), 6337–6347.CrossRefGoogle Scholar
  2. Bourscheidt, V., Junior, O. P., Naccarato, K. P., & Pinto, I. R. C. A. (2009). The influence of topography on the cloud-to-ground lightning density in South Brazil. Atmospheric Research, 91(2–4), 508–513.CrossRefGoogle Scholar
  3. Burrows, W. R., King, P., Lewis, P. J., Kochtubajda, B., Snyder, B., & Turcotte, V. (2002). Lightning occurrence patterns over Canada and adjacent United States from lightning detection network observations. Atmosphere-Ocean, 40(1), 59–80.CrossRefGoogle Scholar
  4. Carvalho, L. M., Jones, C., & Liebmann, B. (2002). Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. Journal of Climate, 15(17), 2377–2394.CrossRefGoogle Scholar
  5. Chaves, R. R., & Nobre, P. (2004). Interactions between sea surface temperature over the South Atlantic Ocean and the South Atlantic Convergence Zone. Geophysical Research Letters, 31(3), L03204.  https://doi.org/10.1029/2003GL018647 Google Scholar
  6. Chen, S. M., Du, Y., & Fan, L. M. (2004). Lightning data observed with lightning location system in Guang-Dong province, China. IEEE Transactions on Power Delivery, 19(3), 1148–1153.CrossRefGoogle Scholar
  7. Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., et al. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-4.CrossRefGoogle Scholar
  8. Coelho, C. A., de Oliveira, C. P., Ambrizzi, T., Reboita, M. S., Carpenedo, C. B., Campos, J. L. P. S., et al. (2016). The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics, 46(11–12), 3737–3752.CrossRefGoogle Scholar
  9. Diendorfer, G., Schulz, W., & Rakov, V. A. (1998). Lightning characteristics based on data from the Austrian lightning locating system. IEEE Transactions on Electromagnetic Compatibility, 40(4), 452–464.CrossRefGoogle Scholar
  10. Farias, W. R. G., Pinto, O., Jr., Naccarato, K. P., & Pinto, I. R. C. A. (2009). Anomalous lightning activity over the Metropolitan Region of São Paulo due to urban effects. Atmospheric Research, 91(2–4), 485–490.CrossRefGoogle Scholar
  11. Fernandes, W. A., Pinto, I. R., Pinto, O., Longo, K. M., & Freitas, S. R. (2006). New findings about the influence of smoke from fires on the cloud-to-ground lightning characteristics in the Amazon region. Geophysical research letters, 33(20), L20810.  https://doi.org/10.1029/2006GL027744.CrossRefGoogle Scholar
  12. Gin, R. B. B., Pereira Filho, A. J., Beneti, C. A. A., & Guedes, R. L. (2012). Estudo das descargas elétricas atmosféricas no Sul e Sudeste do Brasil: Análise preliminar. XI Congresso Brasileiro de Meteorologia.Google Scholar
  13. Herdies, D. L., da Silva, A., Silva Dias, M. A., & Nieto Ferreira, R. (2002). Moisture budget of the bimodal pattern of the summer circulation over South America. Journal of Geophysical Research: Atmospheres, 107(D20), LBA-42.CrossRefGoogle Scholar
  14. Hodanish, S., Sharp, D., Collins, W., Paxton, C., & Orville, R. E. (1997). A 10-year monthly lightning climatology of Florida: 1986–1995. Weather and Forecasting, 12(3), 439–448.CrossRefGoogle Scholar
  15. Hojo, J., Ishii, M., Kawamura, T., Suzuki, F., Komuro, H., & Shiogama, M. (1989). Seasonal variation of cloud-to-ground lightning flash characteristics in the coastal area of the Sea of Japan. Journal of Geophysical Research: Atmospheres, 94(D11), 13207–13212.CrossRefGoogle Scholar
  16. Horizonte, B. (2005). Mapeando a climatologia das descargas atmosféricas em Minas Gerais, utilizando dados de 1989 a 2002-uma análise exploratória. Doctoral dissertation, Pontifícia Universidade Católica de Minas Gerais.Google Scholar
  17. Huffines, G. R., & Orville, R. E. (1999). Lightning ground flash density and thunderstorm duration in the continental United States: 1989–1996. Journal of Applied Meteorology, 38(7), 1013–1019.CrossRefGoogle Scholar
  18. Krider, E. P., Noggle, R. C., Pifer, A. E., & Vance, D. L. (1980). Lightning direction-finding systems for forest fire detection. Bulletin of the American Meteorological Society, 61(9), 980–986.CrossRefGoogle Scholar
  19. Lopez, R. E., & Holle, R. L. (1986). Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Monthly Weather Review, 114(7), 1288–1312.CrossRefGoogle Scholar
  20. Lucena, A. J., E. B. Correa, O. C. Rotunno Filho, L. F. Peres, J. R. A. França, and M. G. A. da Silva Justi (2011), Heat island and precipitation events in the metropolitan area of Rio de Janeiro (RMRJ). Proceedings of the XIV World Water Congress (in Portuguese).Google Scholar
  21. Lucena, A. J., Rotunno Filho, O. C., França, J. R., Peres, L., & Xavier, L. N. R. (2013). Urban climate and clues of heat island events in the metropolitan area of Rio de Janeiro. Theoretical and Applied Climatology, 111(3–4), 497–511.CrossRefGoogle Scholar
  22. Lyons, W. A., Nelson, T. E., Williams, E. R., Cramer, J. A., & Turner, T. R. (1998). Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science, 282(5386), 77–80.CrossRefGoogle Scholar
  23. MacGorman, D. R., & Rust, W. D. (1998). The electrical nature of storms. Oxford University Press on Demand.Google Scholar
  24. Naccarato, K. P. (2005). Análise das características dos relâmpagos na região sudeste do Brasil. PhD thesis, INPE, São José dos Campos, INPE-8380-TDI/770.Google Scholar
  25. Naccarato, K. P., Pinto, O., & Pinto, I. R. C. A. (2003). Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophysical Research Letters, 30(13), 1674.  https://doi.org/10.1029/2003GL017496.CrossRefGoogle Scholar
  26. Naccarato, K. P., Pinto, O., Pinto, I. R. C. A., Cazetta Filho, A., & Amorim, G. E. (2001, October). Lightning characteristics in the southeastern region of Brazil: 1999–2000. 7th International Congress of the Brazilian Geophysical Society.Google Scholar
  27. Ogawa, T. (1995). Lightning currents. In H. Volland (Ed.), Handbook of atmospheric electrodynamics (Vol. 1, pp. 93–136). Boca Raton: CRC Press.Google Scholar
  28. Orville, R. E. (1990). Peak-current variations of lightning return strokes as a function of latitude. Nature, 343(6254), 149.CrossRefGoogle Scholar
  29. Orville, R. E. (1991). Lightning ground flash density in the contiguous United States-1989. Monthly Weather Review, 119(2), 573–577.CrossRefGoogle Scholar
  30. Orville, R. E., & Huffines, G. R. (2001). Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Monthly Weather Review, 129(5), 1179–1193.CrossRefGoogle Scholar
  31. Orville, R. E., Huffines, G. R., Burrows, W. R., Holle, R. L., & Cummins, K. L. (2002). The North American lightning detection network (NALDN)—First results: 1998–2000. Monthly Weather Review, 130(8), 2098–2109.CrossRefGoogle Scholar
  32. Orville, R. E., Huffines, G., Nielsen-Gammon, J., Zhang, R., Ely, B., Steiger, S., et al. (2001). Enhancement of cloud-to-ground lightning over Houston, Texas. Geophysical Research Letters, 28(13), 2597–2600.CrossRefGoogle Scholar
  33. Orville, R. E., & Silver, A. C. (1997). Lighting ground flash density in the contiguous United States: 1992–95. Monthly Weather Review, 125(4), 631–638.CrossRefGoogle Scholar
  34. Orville, R. E., Weisman, R. A., Pyle, R. B., & Henderson, R. W. (1987). Cloud-to-ground lightning flash characteristics from June 1984 through May 1985. Journal of Geophysical Research: Atmospheres, 92(D5), 5640–5644.CrossRefGoogle Scholar
  35. Orville, R. E., Zipser, E. J., Brook, M., Weidman, C., Aulich, G., Krider, E. P., et al. (1997). Lightning in the region of the TOGA COARE. Bulletin of the American Meteorological Society, 78(6), 1055–1067.CrossRefGoogle Scholar
  36. Peres, L., de Lucena, A. J., Rotunno Filho, O. C., & de Almeida França, J. R. (2018). The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 64, 104–116.CrossRefGoogle Scholar
  37. Petersen, W. A., & Rutledge, S. A. (1992). Some characteristics of cloud-to-ground lightning in tropical northern Australia. Journal of Geophysical Research: Atmospheres, 97(D11), 11553–11560.CrossRefGoogle Scholar
  38. Petersen, W. A., & Rutledge, S. A. (1998). On the relationship between cloud-to-ground lightning and convective rainfall. Journal of Geophysical Research: Atmospheres, 103(D12), 14025–14040.CrossRefGoogle Scholar
  39. Pinto, O., Gin, R. B. B., Pinto, I. R. C. A., Mendes, O., Diniz, J. H., & Carvalho, A. M. (1996). Cloud-to-ground lightning flash characteristics in southeastern Brazil for the 1992–1993 summer season. Journal of Geophysical Research: Atmospheres, 101(D23), 29627–29635.CrossRefGoogle Scholar
  40. Pinto, O., Naccarato, K. P., Pinto, I. R. C. A., Fernandes, W. A., & Neto, O. P. (2006). Monthly distribution of cloud-to-ground lightning flashes as observed by lightning location systems. Geophysical Research Letters, 33, L09811.  https://doi.org/10.1029/2006GL026081.CrossRefGoogle Scholar
  41. Pinto, I. R. C. A., & Pinto, O., Jr. (2003). Cloud-to-ground lightning distribution in Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 65(6), 733–737.CrossRefGoogle Scholar
  42. Pinto, O., & Pinto, I. R. C. A. (2008). On the sensitivity of cloud-to-ground lightning activity to surface air temperature changes at different timescales in São Paulo. Brazil. Journal of Geophysical Research: Atmospheres, 113, D20123.  https://doi.org/10.1029/2008JD009841.CrossRefGoogle Scholar
  43. Pinto, O., Pinto, I. R. C. A., de Campos, D. R., & Naccarato, K. P. (2009). Climatology of large peak current cloud-to-ground lightning flashes in southeastern Brazil. Journal of Geophysical Research: Atmospheres, 114, D16105.  https://doi.org/10.1029/2009JD012029.CrossRefGoogle Scholar
  44. Pinto, O., Jr., Pinto, I. R. C., Diniz, J. H., Cazetta Filho, A., Cherchiglia, L. C., & Carvalho, A. M. (2003). A seven-year study about the negative cloud-to-ground lightning flash characteristics in Southeastern Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 65(6), 739–748.CrossRefGoogle Scholar
  45. Pinto, O., Pinto, I. R. C. A., & Ferro, M. A. S. (2013). A study of the long-term variability of thunderstorm days in southeast Brazil. Journal of Geophysical Research: Atmospheres, 118(11), 5231–5246.Google Scholar
  46. Pinto, I. R. C. A.; Pinto Jr., O; Pinto Neto, O (2004) The impact of the El Niño on the lightning distribution in South America. International Conference on Lightning Detection, 18., 2004, Helsinki, Finlândia. Proceedings Helsinki: Vaisala Inc., CD-ROM.Google Scholar
  47. Pinto, I. R. C. A., Pinto, O., Jr., Gomes, M. A. S. S., & Ferreira, N. J. (2004). Urban effect on the characteristics of cloud-to-ground lightning over Belo Horizonte-Brazil. Annales Geophysicae, 22(2), 697–700.  https://doi.org/10.5194/angeo-22-697-2004 CrossRefGoogle Scholar
  48. Pinto, O., Pinto, I. R. C. A., Gomes, M. A. S. S., Vitorello, I., Padilha, A. L., Diniz, J. H., et al. (1999a). Cloud-to-ground lightning in southeastern Brazil in 1993: 1. Geographical distribution. Journal of Geophysical Research: Atmospheres, 104(D24), 31369–31379.CrossRefGoogle Scholar
  49. Pinto, I. R. C. A., Pinto, O., Rocha, R. M. L., Diniz, J. H., & Carvalho, A. M. (1999b). Cloud-to-ground lightning in southeastern Brazil in 1993: 2. Time variations and flash characteristics. Journal of Geophysical Research: Atmospheres, 104(D24), 31381–31387.CrossRefGoogle Scholar
  50. Rakov, V. A., & Uman, M. A. (2003). Lightning: physics and effects. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. Ramos, A. M., Ramos, R., Sousa, P., Trigo, R. M., Janeira, M., & Prior, V. (2011). Cloud to ground lightning activity over Portugal and its association with circulation weather types. Atmospheric Research, 101(1–2), 84–101.CrossRefGoogle Scholar
  52. Reap, R. M. (1994). Analysis and prediction of lightning strike distributions associated with synoptic map types over Florida. Monthly Weather Review, 122(8), 1698–1715.CrossRefGoogle Scholar
  53. Rocha, R. M. L., Pinto, I. R. C. A., & Pinto Jr, O. (1997, November). Cloud-to ground lightning flash characteristics in Southeastern Brazil in the Winter Season. 5th International Congress of the Brazilian Geophysical Society.Google Scholar
  54. Rodrigues, R. B., Mendes, V. M. F., & Catalão, J. P. D. S. (2010). Lightning data observed with lightning location system in Portugal. IEEE Transactions on Power Delivery, 25(2), 870–875.CrossRefGoogle Scholar
  55. Romps, D. M., Seeley, J. T., Vollaro, D., & Molinari, J. (2014). Projected increase in lightning strikes in the United States due to global warming. Science, 346(6211), 851–854.CrossRefGoogle Scholar
  56. Russo, A., Ramos, A. M., Benali, A., & Trigo, R. M. (2017, April). Forest fires caused by lightning activity in Portugal. EGU General Assembly Conference Abstracts (Vol. 19, p. 17613).Google Scholar
  57. Santos, A. P. P., Coelho, C. A., Pinto Júnior, O., dos Santos, S. R. Q., de Lima, F. J. L., & de Souza, E. B. (2018). Climatic diagnostics associated with anomalous lightning incidence during the summer 2012/2013 in Southeast Brazil. International Journal of Climatology, 38(2), 996–1009.CrossRefGoogle Scholar
  58. Santos, A. P. P., Júnior, O. P., de Souza, E. B., Azambuja, R., & dos Santos, S. R. Q. (2016). Spatiotemporal variability and identify Extreme Events of Lightning in the State of São Paulo during the Summer. Revista Brasileira de Geografia Física, 9(2), 346–352.CrossRefGoogle Scholar
  59. Santos, A. P. P., Pinto Júnior, O., Santos, S. R. Q., Lima, F. J. L., Souza, E. B., Morais, A. A. R., et al. (2017). Climatic Projections of Lightning in Southeastern Brazil Using CMIP5 Models in RCP’s Scenarios 4.5 and 8.5. American Journal of Climate Change, 6, 539–553.CrossRefGoogle Scholar
  60. Sátori, G., Williams, E., & Lemperger, I. (2009). Variability of global lightning activity on the ENSO time scale. Atmospheric Research, 91(2–4), 500–507.CrossRefGoogle Scholar
  61. Schulz, W., Cummins, K., Diendorfer, G., & Dorninger, M. (2005). Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. Journal of Geophysical Research: Atmospheres, 110, D09101.  https://doi.org/10.1029/2004JD005332.CrossRefGoogle Scholar
  62. Soriano, L. R., & de Pablo, F. (2002). Maritime cloud-to-ground lightning: The western Mediterranean Sea. Journal of Geophysical Research: Atmospheres, 107(D21), 4597.  https://doi.org/10.1029/2002JD002211.Google Scholar
  63. Soriano, L. R., De Pablo, F., & Tomas, C. (2005). Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. Journal of Atmospheric and Solar-Terrestrial Physics, 67(16), 1632–1639.CrossRefGoogle Scholar
  64. Soriano, L. R., Pablo, F., & Diez, E. G. (2001). Cloud-to-ground lightning activity in the Iberian Peninsula: 1992–1994. Journal of Geophysical Research: Atmospheres, 106(D11), 11891–11901.CrossRefGoogle Scholar
  65. Steiger, S. M., Orville, R. E., & Huffines, G. (2002). Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. Journal of Geophysical Research: Atmospheres, 107(D11), 4117.  https://doi.org/10.1029/2001JD001142.CrossRefGoogle Scholar
  66. Watson, A. I., López, R. E., & Holle, R. L. (1994). Diurnal cloud-to-ground lightning patterns in Arizona during the southwest monsoon. Monthly Weather Review, 122(8), 1716–1725.CrossRefGoogle Scholar
  67. Wierzchowski, J., Heathcott, M., & Flannigan, M. D. (2002). Lightning and lightning fire, central cordillera. Canada. International Journal of Wildland Fire, 11(1), 41–51.CrossRefGoogle Scholar
  68. Williams, E. R., Mushtak, V. C., & Boccippio, D. J. (2003). Another look at the dependence of lightning flash rate on the temperature of boundary layer air in the present climate. Proceedings 12th International Conference on Atmospheric Electricity (pp. 9–13).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Meteorologia, Instituto de GeociênciasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Centro de Estudos Florestais, Instituto Superior de AgronomiaUniversidade de LisboaLisbonPortugal
  3. 3.Instituto Dom Luiz, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations