Advertisement

Estimating Oceanic Crustal Structure from OBS Data Using Teleseismic P Wave Wavefield Continuation

  • Degao Zheng
  • Robert B. Herrmann
  • Xiaohui HeEmail author
Article

Abstract

Ocean bottom seismometers (OBS) have been widely used in studies of oceanic crustal structure. However, it is challenging to estimate the oceanic crustal structure using teleseismic P waves recorded at a single OBS station, due to water reverberations and the close arrival time between the Moho-converted Ps phase and its multiples. We propose herein a method (the Hβ algorithm) based on wavefield continuation and decomposition, whereby the oceanic crustal thickness and average S wave velocity can be estimated by minimizing the energy of the upgoing S wave within the uppermost mantle. Forward tests indicate that the Hβ algorithm can resolve the thickness and S-wave velocity of each crustal layer robustly. We apply this method to an OBS station near Hawaii (station PL11) and obtain the oceanic crustal structure beneath the station. The resolved crustal thickness is consistent with previous studies.

Keywords

Ocean bottom seismometers wavefield continuation wavefield decomposition oceanic crustal velocity structure 

Notes

Acknowledgements

This work made use of the Generic Mapping Tools (GMT) and Seismic Analysis Code (SAC). This study is supported by the National Natural Science Foundation of China (grant nos. 41590854, 41804039, 41774049, 41674051) and Guangdong Province Introduced R&D Team of Geological Processes and Natural Disasters around the South China Sea (2016ZT06N331).

References

  1. Aki, K., & Richards, P. G. (2002). Quantitative seismology. Mill Valley, California: University Science Books.Google Scholar
  2. Arroyo, I. G., Husen, S., Flueh, E. R., Gossler, J., Kissling, E., & Alvarado, G. E. (2009). Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off-and onshore networks. Geophysical Journal International, 179, 827–849.CrossRefGoogle Scholar
  3. Aster, R. C., & Shearer, P. M. (1991). High-frequency borehole seismograms recorded in the San Jacinto Fault zone, Southern California Part 2. Attenuation and site effects. Bulletin of the Seismological Society of America, 81, 1081–1100.Google Scholar
  4. Capdeville, Y., & Marigo, J. J. (2008). Shallow layer correction for spectral element like methods. Geophysical Journal International, 172(3), 1135–1150.CrossRefGoogle Scholar
  5. Chen, Y., Niu, F., Liu, R., Huang, Z., Tkalčić, H., Sun, L., et al. (2010). Crustal structure beneath China from receiver function analysis. Journal of Geophysical Research: Solid Earth, 115, B03307.CrossRefGoogle Scholar
  6. Davies, G. F. (1988). Ocean bathymetry and mantle convection: 1. Largeeiver function analysis. Journal of Geophysical Research: Solid Earth, 193, 10467–10480.CrossRefGoogle Scholar
  7. Detrick, R. S., & Crough, S. T. (1978). Island subsidence, hot spots, and lithospheric thinning. Journal of Geophysical Research: Solid Earth, 83, 1236–1244.CrossRefGoogle Scholar
  8. Eccles, J. D., White, R. S., & Christie, P. A. (2009). Identification and inversion of converted shear waves: case studies from the European North Atlantic continental margins. Geophysical Journal International, 179, 381–400.CrossRefGoogle Scholar
  9. Ewing, M. W. (1957). Elastic waves in layered media. New York: McGraw-Hill.CrossRefGoogle Scholar
  10. Forsyth, D. W., Webb, S. C., Dorman, L. M., & Shen, Y. (1998). Phase velocities of Rayleigh waves in the MELT experiment on the East Pacific Rise. Science, 280, 1235–1238.CrossRefGoogle Scholar
  11. Gilbert, F., & Backus, G. E. (1966). Propagator matrices in elastic wave and vibration problems. Geophysics, 31, 326–332.CrossRefGoogle Scholar
  12. Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43, 17–34.Google Scholar
  13. Husen, S., Kissling, E., Flueh, E., & Asch, G. (1999). Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network. Geophysical Journal International, 138, 687–701.CrossRefGoogle Scholar
  14. Jordan, T. H. (1979). Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. The Mantle Sample: Inclusion in Kimberlites and Other Volcanics, 16, 1–14.Google Scholar
  15. Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., et al. (2009). Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science, 324, 499–502.CrossRefGoogle Scholar
  16. Kennett, B. L. N., Kerry, N. J., & Woodhouse, J. H. (1978). Symmetries in the reflection and transmission of elastic waves. Geophysical Journal of the Royal Astronomical Society, 52, 215–229.CrossRefGoogle Scholar
  17. Komatitsch, D., & Tromp, J. (2002). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303–318.CrossRefGoogle Scholar
  18. Leahy, G. M., Collins, J. A., Wolfe, C. J., Laske, G., & Solomon, S. C. (2010). Underplating of the Hawaiian Swell: evidence from teleseismic receiver functions. Geophysical Journal International, 183, 313–329.CrossRefGoogle Scholar
  19. Leahy, G. M., & Park, J. (2005). Hunting for oceanic island Moho. Geophysical Journal International, 160, 1020–1026.CrossRefGoogle Scholar
  20. Morgan, P. J., Morgan, W. J., & Price, E. (1995). Hotspot melting generates both hotspot volcanism and a hotspot swell? Journal of Geophysical Research: Solid Earth, 100, 8045–8062.CrossRefGoogle Scholar
  21. Ni, S., Li, Z., & Somerville, P. (2014). Estimating subsurface shear velocity with radial to vertical ratio of local P waves. Seismological Research Letters, 85(1), 82–90.CrossRefGoogle Scholar
  22. Olson, P. (1990). Hot spots, swells and mantle plumes. In M. P. Ryan (Ed.), Magma transport and storage (pp. 33–51). Hoboken: John Wiley.Google Scholar
  23. Péron, V. (2014). Equivalent boundary conditions for an Elasto-Acoustic problem set in a domain with a thin layer. ESAIM: Mathematical Modelling and Numerical Analysis, 48(5), 1431–1449.Google Scholar
  24. Press, F., & Ewing, M. (1950). Propagation of explosive sound in a liquid layer overlying a semi-infinite elastic solid. Geophysics, 15, 426–446.CrossRefGoogle Scholar
  25. Rychert, C. A., & Shearer, P. M. (2009). A global view of the lithosphere-asthenosphere boundary. Science, 324, 495–498.CrossRefGoogle Scholar
  26. Shen, Y., Sheehan, A. F., Dueker, K. G., de Groot-Hedlin, C., & Gilbert, H. (1998). Mantle discontinuity structure beneath the southern East Pacific Rise from P-to-S converted phases. Science, 280, 1232–1235.CrossRefGoogle Scholar
  27. Sleep, N. H. (1990). Hotspots and mantle plumes: Some phenomenology. Journal of Geophysical Research: Solid Earth, 95, 6715–6736.CrossRefGoogle Scholar
  28. Stewart, R. H. (2008). Introduction to physical oceanography. College Station: Texas A & M University.Google Scholar
  29. Tao, K., Liu, T., Ning, J., & Niu, F. (2014). Estimating sedimentary and crustal structure using wavefield continuation: theory, techniques and applications. Geophysical Journal International, 197, 443–457.CrossRefGoogle Scholar
  30. Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21, 89–93.CrossRefGoogle Scholar
  31. Wolfe, C. J., & Solomon, S. C. (1998). Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise. Science, 280, 1230–1232.CrossRefGoogle Scholar
  32. Zhang, G., Tao, C., Wang, A., Deng, X., & He, Y. (2017). Accuracy evaluation of multibeam echo sounder bathymetry data. Acta Oceanologica Sinica, 39, 106–114. (in Chinese with English abstract).Google Scholar
  33. Zhou, Y., Ni, S., Chu, R., & Yao, H. (2016). Accuracy of the water column approximation in numerically simulating propagation of teleseismic PP waves and Rayleigh waves. Geophysical Journal International, 206, 1315–1326.CrossRefGoogle Scholar
  34. Zhu, L., & Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105, 2969–2980.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Earth and Atmospheric SciencesSaint Louis UniversitySt. LouisUSA
  3. 3.Guangdong Provincial Key Lab of Geodynamics and Geohazards, School of Earth Sciences and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations