Pure and Applied Geophysics

, Volume 176, Issue 8, pp 3737–3755 | Cite as

Global Atmospheric Oscillation: An Integrity of ENSO and Extratropical Teleconnections

  • I. V. SerykhEmail author
  • D. M. Sonechkin
  • V. I. Byshev
  • V. G. Neiman
  • Yu. A. Romanov


Many researchers have recognized the long distance teleconnections between El Niño–Southern Oscillation (ENSO) events and some other processes in the global climate system happening in areas often very far from the equatorial zone of the Pacific Ocean. In this paper we investigate similar links between ENSO and extratropical processes taken in their whole set. For this goal we compute differences between the sea-level pressure and the near-surface air (sea surface) temperature global fields which correspond to either El Niño or La Niña events observed since the end of the XIX century and up to the beginning of the XXI century. As a result, we establish that an integrity exists of ENSO and the extratropical teleconnections such as North Atlantic Oscillation (NAO), Arctic Oscillation (AO), the Northern Hemisphere annular (NHA) mode as well as the Pacific–North American (PNA) pattern, and their analogs in the Southern Hemisphere in the interannual timescale. Named this integrity the Global Atmospheric Oscillation (GAO), we define two representative indices of GAO, and investigate the temporal dynamics of these indices. This investigation reveals that GAO’s extratropical components may be real irrespective of ENSO while the latter accompanies GAO in all cases. Moreover, in view of a general eastward propagation of the GAO as a spatial structure, some its extratropical components show changes of their features prior the El Niño (La Niña) begins to form. Using these features as fingerprints of the forthcoming evolution of ENSO, we define another GAO index for the El Niño prediction with the lead-time of about 1 year. At last, we establish that some of the CMIP5-models reproduce GAO reasonably well.


El Niño La Niña ENSO extratropical atmospheric teleconnections Global Atmospheric Oscillation (GAO) long-term El Niño prediction GAO in the CMIP5-models 



This work was supported by the Russian Science Foundation (Grant no. 14-50-00095), the Ministry of Science and Higher Education of the Russian Federation (Grant no. 0149-2018-0002).

Supplementary material

24_2019_2182_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3920 kb)
24_2019_2182_MOESM2_ESM.avi (9.3 mb)
Supplementary material 2 (AVI 9518 kb)


  1. Allan, R. J., & Ansell, T. J. (2006). A new globally-complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004. Journal of Climate, 19, 5816–5846.CrossRefGoogle Scholar
  2. Ayers, J. M., & Strutton, P. G. (2013). Nutrient variability in subantarctic mode waters forced by the southern annular mode and ENSO. Geophysical Research Letters, 40, 3419–3423.CrossRefGoogle Scholar
  3. Bailey, J. S. (1998). Temperature anomalies in high northerly latitudes and their link with the El Niño/Southern oscillation. Annales of Geophysicae, 16(7), 1523–1526.CrossRefGoogle Scholar
  4. Berlage, H.P. (1957). Schommelingen van de algemene luchtcirculatie met perioden van meer dan een jaar, hun aard en betekenis voor de weersverwachting op lange termijn, (fluctuations of the general atmospheric circulation of more than one year, their nature and prognostic value). Mededelingen en Verhandelingen, (vol. 69, p. 152) Koninklijk Nederlands Meteorologisch Instituut.Google Scholar
  5. Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163–172.CrossRefGoogle Scholar
  6. Blekhman, I. I. (1971). Synchronization of dynamical systems (p. 896). Moscow: Nauka.Google Scholar
  7. Boschat, G., Terray, P., & Masson, S. (2013). Extratropical forcing of ENSO. Geophysical Research Letters, 40, 1605–1611.CrossRefGoogle Scholar
  8. Brönnimann, S. (2007). Impact of El Niño-Southern oscillation on European climate. Reviews of Geophysics, 45(RG3003/2007), 1–28.Google Scholar
  9. Bryson, R. A., & Starr, T. B. (1975). Chandler tides in the atmosphere. Journal of Atmospheric Science, 34, 1975–1986.CrossRefGoogle Scholar
  10. Byshev, V. I., Neiman, V. G., Ponomarev, V. I., Romanov, Yu A, Serykh, I. V., & Tsurikova, T. V. (2014). The Influence of Global atmospheric oscillation on formation of climate anomalies in the Russian Far East. Doklady Earth Sciences, 458(1), 1116–1120.CrossRefGoogle Scholar
  11. Byshev, V. I., Neiman, V. G., Romanov, Yu A, & Serykh, I. V. (2012a). El Niño as a consequence of the global oscillation in the dynamics of the Earth’s climatic system. Doklady Earth Sciences, 446(1), 1089–1094.CrossRefGoogle Scholar
  12. Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2012b). On El Niño’s impact upon the climate characteristics of the Indian monsoon. Oceanology, 52(2), 147–156.CrossRefGoogle Scholar
  13. Byshev, V. I., Neiman, V. G., Romanov, Yu A, Serykh, I. V., & Sonechkin, D. M. (2016). Statistical significance and climatic role of the Global Atmospheric Oscillation. Oceanology, 56(2), 165–171.CrossRefGoogle Scholar
  14. Chang, P., Fang, Y., Saravanan, R., et al. (2006). The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324–328.CrossRefGoogle Scholar
  15. Chen, X. Y., & Wallace, J. M. (2015). ENSO-like variability: 1900–2013. Journal of Climate, 28, 9623–9641. Scholar
  16. Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., et al. (2011). The twentieth century reanalysis project. Quarterly Journal of Royal Meteorological. Society, 137, 1–28. Scholar
  17. De Viron, O., Dikcey, J. O., & Ghil, M. (2013). Global modes of climate variability. Geophysical Research Letters, 40, 1832–1837.CrossRefGoogle Scholar
  18. Diaz, H. F., Hoeling, M. P., & Eischeid, J. K. (2001). ENSO variability, teleconnections, and climate change. International Journal of Climatology, 21, 1845–1862.CrossRefGoogle Scholar
  19. Halpert, M. S., & Ropelewski, C. F. (1992). Surface–temperature patterns associated with the Southern Oscillation. Journal of Climate, 5(6), 577–593.CrossRefGoogle Scholar
  20. Ham, Y.-G., Kug, J.-S., & Park, J.-Y. (2013). Two distinct roles of Atlantic SSTs in ENSO variability: north tropical Atlantic SST and Atlantic Niño. Geophysical Research Letters, 40, 4012–4017.CrossRefGoogle Scholar
  21. Handoh, I. C., Bigg, G. R., Matthews, A. J., & Stevens, D. P. (2006). Interannual variability of the tropical Atlantic independent of and associated with ENSO: Part II. The south tropical Atlantic. International Journal of Climatology, 26, 1957–1976.CrossRefGoogle Scholar
  22. Hirahara, S., Ishii, M., & Fukuda, Y. (2014). Centennial-scale sea surface temperature analysis and its uncertainty. Journal of Climate, 27, 57–75.CrossRefGoogle Scholar
  23. Horel, J. D., & Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109, 813–829.CrossRefGoogle Scholar
  24. Huang, B., Banzon, V. F., Freeman, E., et al. (2015). Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. Journal of Climate, 28(3), 911–930.CrossRefGoogle Scholar
  25. Jevrejeva, S., Moore, J. C., & Grinsted, A. (2003). Influence of the Arctic oscillation and El-Niño–Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. Journal of Geophysical Research, 108, 4677. Scholar
  26. Jones, P. D. (1989). The influence of ENSO on global temperatures. Climate Monitor, 17, 80–89.Google Scholar
  27. Kalnay, E., Kanamitsu, M., Kistler, R., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin American Meteorological Society, 77, 437–471.CrossRefGoogle Scholar
  28. Keenlyside, N. S., Ding, H., & Latif, M. (2013). Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophysical Research Letters, 40, 2278–2283.CrossRefGoogle Scholar
  29. Kobayashi, S., Ota, Y., Harada, Y., et al. (2015). The JRA-55 reanalysis: General specifications and basic characteristics. Journal of Meteorological Society of Japan, 93(1), 5–48.CrossRefGoogle Scholar
  30. Koshlyakov, M. N., Romanov, Yu A, & Romanov, A. A. (1998). El Niño-southern oscillation and the iceberg distribution in the Pacific sector of the Antarctic. Oceanology, 38(4), 437–446.Google Scholar
  31. Lumpkin, R., & Johnson, G. C. (2013). Global ocean surface velocities from drifters: mean variance, El Niño–southern oscillation response, and seasonal cycle. Journal of Geophysical Research, 118(6), 2992–3006. Scholar
  32. McPhaden, M. J. (2002). El Niño and La Niña; causes and global consequences. Wiley encyclopedia of global environmental change (Vol. 1, pp. 353–370). Chichester: Wiley.Google Scholar
  33. Mo, K. C., & White, G. H. (1985). Teleconnections on the southern hemisphere. Monthly Weather Review, 113, 22–37.CrossRefGoogle Scholar
  34. Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 database. Journal of Geophysical Research, 117, D08101. Scholar
  35. Peng, J. B., Chen, L. T., & Zhang, Q. Y. (2014a). The relationship between the El Nino/La Nina cycle and the transition chains of four atmospheric oscillations. Part I: The four oscillations. Advance of Atmospheric Sciences, 31(2), 468–479.CrossRefGoogle Scholar
  36. Peng, J. B., Chen, L. T., & Zhang, Q. Y. (2014b). The relationship between the El Nino/La Nina cycle and the transition chains of four atmospheric oscillations. Part II: The relationship and a new approach to the prediction of El Nino. Advance of Atmospheric Sciences, 31(3), 637–646.CrossRefGoogle Scholar
  37. Peterson, R. G., & White, W. B. (1998). Slow teleconnections linking the Antarctic circumpolar wave with the tropical El Nino–Southern Oscillation. Journal of Geophysical Research, 103, 24573–24583.CrossRefGoogle Scholar
  38. Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization. A universal concept in nonlinear sciences (p. 496). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Rayner, N. A., Parker, D. E., Horton, E. B., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407.CrossRefGoogle Scholar
  40. Romanov, Yu A, Romanova, N. A., & Romanov, P. (2014). Changing effect of El Niño on Antarctic iceberg distribution: From canonical El Niño to El Niño Modoki. Journal of Geophysical Research, 119C(1), 595–614.Google Scholar
  41. Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115, 1606–1626.CrossRefGoogle Scholar
  42. Sardeshmukh, P. D., Compo, G. P., & Penland, C. (2000). Changes of probability associated with El Niño. Journal of Climate, 13, 4268–4286.CrossRefGoogle Scholar
  43. Servain, J., Picaut, J., & Merle, J. (1982). Evidence of remote forcing in the equatorial Atlantic ocean. Journal of Physical Oceanography, 12(5), 457–463.CrossRefGoogle Scholar
  44. Serykh, I. V., & Sonechkin, D. M. (2016). Confirmation of the oceanic pole tide influence on El Niño. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13(2), 44–52.CrossRefGoogle Scholar
  45. Serykh, I. V., & Sonechkin, D. M. (2017). Manifestations of motions of the Earth’s pole in the El Niño–southern oscillation rhythms. Doklady Earth Sciences, 472(2), 256–259.CrossRefGoogle Scholar
  46. Serykh, I. V., & Sonechkin, D. M. (2019). Nonchaotic and globally synchronized short-term climatic variations and their origin. Theoretical and Applied Climatology. Scholar
  47. Stickler, A., Brönnimann, S., Valente, M. A., et al. (2014). ERA-CLIM: historical surface and upper-air data for future reanalyses. Bulletin American Meteorological Society, 95(9), 1419–1430.CrossRefGoogle Scholar
  48. Sugihara, G., May, R., Ye, H., Hsieh, C.-H., Deyle, E., Fogarty, M., et al. (2012). Detecting causality in complex systems. Science, 338, 496–500.CrossRefGoogle Scholar
  49. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). Overview of CMIP5 and the experiment design. Bulletin American Meteorological Society, 93, 485–498.CrossRefGoogle Scholar
  50. Thompson, D. W. J., & Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: month-to-month variability. Journal of Climate, 13, 1000–1016.CrossRefGoogle Scholar
  51. Trenberth, K., & Caron, J. M. (2000). The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. Journal of Climate, 13, 4358–4365.CrossRefGoogle Scholar
  52. Trenberth, K., & Shea, D. J. (1987). On the evolution of the Southern Oscillation. Monthly Weather Review, 115, 3078–3096.CrossRefGoogle Scholar
  53. van Loon, H., & Shea, D. J. (1987). The southern oscillation. Part IV: Anomalies of sea level pressure on the southern hemisphere and on Pacific sea surface temperature during development of a warm event. Monthly Weather Review, 115(2), 370–379.CrossRefGoogle Scholar
  54. Walker, G. T., & Bliss, E. W. (1932). World weather V. Memory Royal Meteorological. Society, 4(36), 53–84.Google Scholar
  55. Walker, G. T., & Bliss, E. W. (1937). World weather VI. Memory Royal Meteorological. Society, 4(39), 119–139.Google Scholar
  56. Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109, 784–812.CrossRefGoogle Scholar
  57. Webster, P. J., & Yang, S. (1992). Monsoon and ENSO: Selectively interactive systems. Quarterly Journal of the Royal Meteorological Society, 118, 877–925.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations