Advertisement

Developing an Approximate Tsunami Hazard Zone for Areas with Poor Topographic Coverage in Alaska

  • D. J. NicolskyEmail author
  • E. N. Suleimani
  • R. D. Koehler
  • J. B. Salisbury
Article
  • 21 Downloads

Abstract

Tsunamigenic earthquakes along the Alaska–Aleutian megathrust pose a major threat to many rural coastal communities in Alaska. To mitigate the impact of tsunamis and minimize loss of life, maximum potential runup and tsunami hazard zones need to be estimated despite a lack of the high-resolution digital elevation models. In this manuscript we present a methodology to approximate tsunami hazard zones in areas with poor topographic and bathymetric coverage. To manage a trade-off between the computational complexity and lack of quality data, we develop three scenario earthquakes with the intention that one of them characterizes impacts of a credible worst-case event. We then apply a safety factor to account for the limited number of considered scenarios and a coarse resolution elevation model used to simulate water dynamics near the community. The developed methodology is illustrated using a case study focused on the community of Adak, in the Andreanof Islands, Alaska. To validate the proposed method, we explore sensitivity of tsunami height with respect to the coseismic slip distribution and develop a comprehensive set of credible worst-case scenarios for the community. The tsunami hazard zone, developed with the use of the safety factor, is validated against high-resolution modeling of potential inundation according to the set of worst-case scenarios in a number of other coastal communities.

Keywords

Tsunami modeling runup tsunami hazard zone approximation 

Notes

Acknowledgements

This project, which is part of the National Tsunami Hazard Mitigation Program (NTHMP), received support from the National Oceanic and Atmospheric Administration (NOAA) under Reimbursable Services Agreement ADN 952011 with the State of Alaska’s Division of Homeland Security & Emergency Management (a division of the Department of Military and Veterans Affairs). Numerical calculations for this work were supported in part by the high-performance computing and data storage resources operated by the Research Computing Systems Group at the University of Alaska Fairbanks, Geophysical Institute. We are grateful to Peter Haeussler (USGS), Ahmet Yalciner (METU) and Jeffrey Freymueller (UAF) for their helpful suggestions and review of potential tsunami sources that helped to improve the manuscript.

References

  1. Applied Technology Council. (2012). Guidelines for design of structures for vertical evacuation from tsunamis, second edition: Redwood City, CA, Applied Technology Council Technical Report FEMA P-646, prepared for Federal Emergency Management Agency (FEMA) National Earthquake Hazard Reduction Program (NEHRP) and National Oceanic and Atmospheric Administration (NOAA) National Tsunami Hazard Mitigation Program (NTHMP). https://www.fema.gov/media-library/assets/documents/14708. Accessed 29 Mar 2019.
  2. Argus, D. F., Gordon, R. G., Heflin, M. B., Ma, Chopo, Eanes, R. J., Willis, P., et al. (2010). The angular velocities of the plates and the velocity of the Earth’s centre from space geodesy. Geophysics Journal International, 180(3), 913–960.  https://doi.org/10.1111/j.1365-246x.2009.04463.x.CrossRefGoogle Scholar
  3. Butler, R. (2014). Great Aleutian tsunamis. Honolulu, HI, University of Hawai’i at Manoa, Hawai’i Institute of Geophysics & Planetology, Peer-Reviewed Report HIGP-2014-1. http://www.higp.hawaii.edu/reports/2014. Accessed 29 Mar 2019.
  4. Carignan, K. S., Taylor, L. A., Eakins, B. W., Warnken, R. R., Medley, P. R., & Lim, E. (2009). Digital elevation model of Adak, Alaska—Procedures, data sources and analysis. National Oceanic and Atmospheric Administration Technical Memorandum NESDIS NGDC-31, U.S. Dept. of Commerce, Boulder, CO. http://www.ngdc.noaa.gov/dem/squareCellGrid/download/258. Accessed 29 Mar 2019.
  5. Carignan, K. S., Eakins, B. W., Lancaster, M., Loveand M. R., & Sutherland, M. (2017). Digital elevation models of Adak and Atka, Alaska: Procedures, data sources, and analysis. National Oceanic and Atmospheric Administration Technical Report, U.S. Dept. of Commerce, Boulder, CO. http://ciresgroups.colorado.edu/coastalDEM/pubs. Accessed 29 Mar 2019.
  6. Cross, R. S., & Freymueller, J. T. (2007). Plate coupling variation and block translation in the Andreanof segment of the Aleutian arc determined by subduction zone modeling using GPS data. Geophysical Research Letters, Solid Earth, 34(6), L06304.  https://doi.org/10.1029/2006GL028970.Google Scholar
  7. DeMets, C., Gordon, R. C., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478.CrossRefGoogle Scholar
  8. Dixon, T. H., & Moore, C. (2012). The seismogenic zone of subduction thrust faults. Columbia: Columbia University Press.Google Scholar
  9. Dunbar, P. K., & Weaver, C. S. (2015). U.S. states and territories national tsunami hazard assessment: Historical record and sources for waves—Update. Report, National Oceanic and Atmospheric Administration, Boulder, CO.Google Scholar
  10. Estabrook, C. H., Jacob, K. H., & Sykes, L. R. (1994). Body wave and surface wave analysis of large and great earthquakes along the eastern Aleutian arc, 1923–1993—Implications for future events. Journal of Geophysical Research, 99(B6), 11643–11662.  https://doi.org/10.1029/93JB03124.CrossRefGoogle Scholar
  11. Freund, L. B., & Barnett, D. M. (1976). A two-dimensional analysis of surface deformation due to dip-slip faulting. Bulletin of the Seismological Society of America, 66(3), 667–675.Google Scholar
  12. Fujii, Y., Satake, K., Sakai, S., Shinohara, M., & Kanazawa, T. (2011). Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space, 63, 815–820.  https://doi.org/10.5047/eps.2011.06.010.CrossRefGoogle Scholar
  13. Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0—A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research.  https://doi.org/10.1029/2011JB008524.Google Scholar
  14. Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., et al. (2011). Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, 38, L00G05.  https://doi.org/10.1029/2011gl048355.CrossRefGoogle Scholar
  15. Johnson, J. M., Tanioka, Yuichiro, Ruff, L. J., Satake, Kenji, Kanamori, Hiroo, & Sykes, L. R. (1994). The 1957 great Aleutian earthquake. Pure and Applied Geophysics, 142(1), 3–28.  https://doi.org/10.1007/BF00875966.CrossRefGoogle Scholar
  16. Kanamori, H. (1970). The Alaska earthquake of 1964—Radiation of long-period surface waves and source mechanism. Journal of Geophysical Research, 75(26), 5029–5040.  https://doi.org/10.1029/JB075i026p05029.CrossRefGoogle Scholar
  17. Kirby, S., Scholl, D., von Huene, R., & Wells, R. (2013). Alaska earthquake source for the SAFRR tsunami scenario, chapter B. In S. L. Ross, & L. M Jones (Eds.), The SAFRR (Science Application for Risk Reduction) Tsunami Scenario: U.S. Geological Survey Open-File Report 2013–1170. http://pubs.usgs.gov/of/2013/1170/b/. Accessed 29 Mar 2019.
  18. Kulikov, E. A., Rabinovich, A. B., Fine, I. V., Bornhold, B. D., & Thomson, R. E. (1998). Tsunami generation by landslides at the Pacific coast of North America and the role of tides. Oceanology, 38(3), 323–328.Google Scholar
  19. Lander, J. F. (1996). Tsunamis affecting Alaska, 1737–1996. Boulder, CO, National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC), Key to Geophysical Research Documentation, vol. 31. ftp://ftp.ngdc.noaa.gov/hazards/publications/Kgrd-31.pdf. Accessed 29 Mar 2019.
  20. Lim, E., Eakins, B. W., & Wigley, R. (2011). Coastal relief model of southern Alaska—Procedures, data sources and analysis. National Oceanic and Atmospheric Administration (NOAA) Technical Memorandum NESDIS NGDC-43. https://www.ngdc.noaa.gov/mgg/coastal/s_alaska.html. Accessed Mar 2019.
  21. Lopez, A. M., & Okal, E. A. (2006). A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’ earthquake. Geophysical Journal International, 165(3), 835–849.  https://doi.org/10.1111/j.1365-246X.2006.02899.x.CrossRefGoogle Scholar
  22. National Centers for Environmental Information (NCEI)/World Data Service (WDS). (2019). Global historical tsunami database at NGDC, 2100 BC to present (interactive map): National Geophysical Data Center, NOAA. http://doi.org/10.7289/V5PN93H7 (in progress).
  23. National Tsunami Hazard Mapping Program (NTHMP). (2012). Proceedings and results of the 2011 NTHMP model benchmarking workshop. Boulder, CO, U.S. Department of Commerce/NOAA/NTHMP, NOAA Special Report. http://nthmp.tsunami.gov. Accessed 29 Mar 2019.
  24. Nicolsky, D. J., Suleimani, E. N., Combellick, R. A., & Hansen, R. A. (2011a). Tsunami inundation maps of Whittier and western Passage Canal, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2011-7. http://doi.org/10.14509/23244.
  25. Nicolsky, D. J., Suleimani, E. N., & Hansen, R. A. (2011b). Validation and verification of a numerical model for tsunami propagation and runup. Pure and Applied Geophysics, 168, 1199–1222.  https://doi.org/10.1007/s00024-010-0231-9.CrossRefGoogle Scholar
  26. Nicolsky, D. J., Suleimani, E. N., Freymueller, J. T., Koehler, R. D. (2015). Tsunami inundation maps of Fox Islands communities, including Dutch Harbor and Akutan, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2015-5, 2 sheets, scale 1:12,500. http://doi.org/10.14509/29414.
  27. Nicolsky, D. J., Suleimani, E. N., Haeussler, P. J., Ryan, H. F., Koehler, R. D., Combellick, R. A., et al. (2013). Tsunami inundation maps of Port Valdez, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2013-1, 1 sheet, scale 1:12,500. http://doi.org/10.14509/25055.
  28. Nicolsky, D. J., Suleimani, E. N., & Koehler, R. D. (2014a). Tsunami inundation maps of Cordova and Tatitlek, Alaska: Alaska Division of Geological & Geophysical Surveys Report of Investigation 2014-1, 49 p. http://doi.org/10.14509/27241.
  29. Nicolsky, D. J., Suleimani, E. N., & Koehler, R. D. (2014b). Tsunami inundation maps of the villages of Chenega Bay and northern Sawmill Bay, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2014-3, 7 sheets, scale. http://doi.org/10.14509/29126.
  30. Nicolsky, D. J., Suleimani, E. N., & Koehler, R. D. (2016a). Tsunami inundation map for the village of Nikolski, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2016-7, 1 sheet, scale 1:25,000. http://doi.org/10.14509/29674.
  31. Nicolsky, D. J., Suleimani, E. N., & Koehler, R. D. (2016b). Tsunami inundation maps for the communities of Chignik and Chignik Lagoon, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2016-8, 2 sheets, scale 1:12,500. http://doi.org/10.14509/29675.
  32. Nicolsky, D. J., Suleimani, E. N., & Koehler, R. D. (2017). Tsunami inundation maps for the city of Sand Point, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2017-3, 4 sheets, scale 1:15,000. http://doi.org/10.14509/29706.
  33. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  34. Pacheco, J. F., Sykes, L. R., & Scholz, C. H. (1993). Nature of seismic coupling along simple plate boundaries of the subduction type. Journal of Geophysical Research, 98(B8), 14133–14159.CrossRefGoogle Scholar
  35. Ross, S. L., Jones, L. M., Miller, K., Porter, K. A., Wein, A., & Wilson, R. I. et al. (2013). SAFRR (science application for risk reduction) tsunami scenario—Chapter A, executive summary and introduction. In: S. L. Ross, & L. M. Jones (Eds.), The SAFRR Tsunami Scenario: U.S. Geological Survey Open-File Report 2013–1170 (pp. 1–17). http://pubs.usgs.gov/of/2013/1170/.
  36. Ryan, H., von Huene, R., Scholl, D., & Kirby, S. (2012). Tsunami hazards to US coasts from giant earthquakes in Alaska. Eos, Transactions American Geophysical Union, 93(19), 185.  https://doi.org/10.1029/2012EO190001.CrossRefGoogle Scholar
  37. Scholz, C. H., & Campos, J. (2012). The seismic coupling of subduction zones revisited. Journal of Geophysical Research—Solid Earth, 117(B5), 5310.  https://doi.org/10.1029/2011jb009003.Google Scholar
  38. Shao, G., Li, X., Ji, C., & Maeda, T. (2011). Focal mechanism and slip history of 2011 Mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves. Earth Planets Space, 63(7), 559–564.  https://doi.org/10.5047/eps.2011.06.028.CrossRefGoogle Scholar
  39. Suleimani, E. N., Nicolsky, D. J., & Koehler, R. D. (2013). Tsunami inundation maps of Sitka, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2013-3, 1 sheet, scale 1:250,000. http://doi.org/10.14509/26671.
  40. Suleimani, E. N., Nicolsky, D. J., & Koehler, R. D. (2015). Tsunami inundation maps of Elfin Cove, Gustavus, and Hoonah, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2015-1. http://doi.org/10.14509/29404.
  41. Suleimani, E. N., Nicolsky, D. J., & Koehler, R. D. (2017). Updated tsunami inundation maps of the Kodiak area, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2017-8, 10 sheets. http://doi.org/10.14509/29740.
  42. Suleimani, E. N., Nicolsky, D. J., Koehler, R. D., Freymueller, J. T., & Macpherson, A. E. (2016) Tsunami inundation maps for King Cove and Cold Bay communities, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2016-1, 2 sheets, scale 1:12,500. http://doi.org/10.14509/29565.
  43. Suleimani, E. N., Nicolsky, D. J., & Salisbury, J. B. (2018). Updated tsunami inundation maps for Homer and Seldovia, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2018-5, 4 sheets. http://doi.org/10.14509/30095.
  44. Suleimani, E. N., Nicolsky, D. J., West, D. A., Combellick, R. A., & Hansen, R. A. (2010). Tsunami inundation maps of Seward and Northern Resurrection Bay, Alaska. Alaska Division of Geological & Geophysical Surveys Report of Investigation 2010-1, 3 sheets, scale 1:12,500. http://doi.org/10.14509/21001.
  45. Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U., & González, F. I. (2007). Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models: Seattle, WA, NOAA/Pacific Marine Environmental Laboratory, Technical Memorandum OAR PMEL-135. http://www.pmel.noaa.gov/pubs/PDF/syno3053/syno3053.pdf. Accessed 29 Mar 2019.
  46. Tichelaar, B. W., & Ruff, L. J. (1993). Depth of seismic coupling along subduction zones. Journal of Geophysical Research, 98(B2), 2017–2037.  https://doi.org/10.1029/92JB02045.CrossRefGoogle Scholar
  47. Uchida, N., Nakajima, J., Hasegawa, A., & Matsuzawa, T. (2009). What controls interplate coupling?—Evidence for abrupt change in coupling across a border between two overlaying plates in the NE Japan subduction zone. Earth and Planetary Science Letters, 283(1–4), 111–121.  https://doi.org/10.1016/j.epsl.2009.04.003.CrossRefGoogle Scholar
  48. Uyeda, S. (1982). Subduction zones—An introduction to comparative subductology. Tectonophysics, 81(3–4), 133–159.  https://doi.org/10.1016/0040-1951(82)90126-3.CrossRefGoogle Scholar
  49. Wu, F. T., & Kanamori, Hiroo. (1973). Source mechanism of February 4, 1965, Rat Island earthquake. Journal of Geophysical Research, 78(26), 6082–6092.  https://doi.org/10.1029/JB078i026p06082.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA
  2. 2.Nevada Bureau of Mines and Geology, Mackay School of Earth Science and EngineeringUniversity of Nevada, RenoRenoUSA
  3. 3.Alaska Division of Geological and Geophysical SurveysFairbanksUSA

Personalised recommendations