Advertisement

Spatial and Temporal Analysis of Temperature and Gaseous Emission Inside a Gallery in An Active Volcanic Island (Tenerife, Canary Islands)

  • Pedro Torres-GonzálezEmail author
  • David Moure-García
  • Natividad Luengo-Oroz
  • Víctor Villasante-Marcos
  • Vicente Soler
  • Ilazkiñe Iribarren
  • Ana Jiménez-Abizanda
  • José García-Fraga
Article
  • 16 Downloads

Abstract

In Tenerife there are a vast number of sub-horizontal blind water mines, called “galleries”. Seven air and soil temperatures and CO2 concentration profiles in air were carried out inside the Río de Guía gallery (hereinafter RdG). An anomalous stable maximum temperature point (hereinafter MTP) was found around 2000 m from the entrance. During the warm period, a clear CO2 stagnation was detected before MTP, showing concentrations up to 14,000 ppm. In order to study gas emission and its dynamics inside the gallery, four stations were deployed around MTP. All stations recorded air and soil temperatures, and CO2 and Rn concentration in air from November 2009 to January 2011. After analyzing this dataset, it was possible to characterize the influence of MTP. This thermal anomaly divided the gallery into two sections. In the cold period, the outer section located outwards from MTP became colder while the inner section warmed up owing to a less heat transfer into the deepest part of the gallery. There were several short periods when variations in barometric pressure created an advection movement that was able to temporally change the gas behavior inside the gallery. Two soil gas samples were taken around MTP and their δ13C (CO2) ratios suggested a magmatic origin. All data were combined to create a model for the gas and thermal dynamics inside the gallery. This model, together with identification of background levels in each parameter, allows to identify any anomalous signal that could be elated with changes in volcanic activity.

Keywords

Thermal anomaly gallery Tenerife radon CO2 and temperature profiles volcano monitoring 

Notes

Acknowledgements

The authors wish to thank the staff of the Centro Geofísico de Canarias for their excellent work and support during this field work. This study was funded by the Instituto Geográfico Nacional (Ministerio de Fomento, Spanish Government).

References

  1. Aiuppa, A., Bertagnini, A., Métrich, N., Moretti, R., Di Muro, A., Liuzzo, M., et al. (2010). A model of degassing for Stromboli volcano. Earth and Planetary Science Letters, 295(1), 195–204.  https://doi.org/10.1016/j.epsl.2010.03.040.CrossRefGoogle Scholar
  2. Albert-Beltrán, J. F., Araña, V., Diez, J. L., & Valentin, A. (1990). Physical–chemical conditions of the Teide volcanic system (Tenerife, Canary Islands). Journal of Volcanology and Geothermal Research, 43(1), 321–332.  https://doi.org/10.1016/0377-0273(90)90059-O.CrossRefGoogle Scholar
  3. Almendros, J., Ibáñez, J. M., Carmona, E., & Zandomeneghi, D. (2007). Array analyses of volcanic earthquakes and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain) during the 2004 seismic activation of Teide volcano. Journal of Volcanology and Geothermal Research, 160(3), 285–299.  https://doi.org/10.1016/j.jvolgeores.2006.10.002.CrossRefGoogle Scholar
  4. Alparone, S., Behncke, B., Giammanco, S., Neri, M., & Privitera, E. (2005). Paroxysmal summit activity at Mt. Etna (Italy) monitored through continuous soil radon measurements. Geophysical Research Letters.  https://doi.org/10.1029/2005GL023352.Google Scholar
  5. Arpa, M. C., Hernández, P. A., Padrón, E., Reniva, P., Padilla, G. D., Bariso, E., et al. (2013). Geochemical evidence of magma intrusion inferred from diffuse CO2 emissions and fumarole plume chemistry: the 2010–2011 volcanic unrest at Taal Volcano, Philippines. Bulletin of Volcanology, 75(10), 747.  https://doi.org/10.1007/s00445-013-0747-9.CrossRefGoogle Scholar
  6. Atkinson, T. C., Smart, P. L., & Wigley, T. M. L. (1983). Climate and natural radon levels in castleguard cave, Columbia Icefields, Alberta, Canada. Arctic and Alpine Research, 15(4), 487–502.  https://doi.org/10.1080/00040851.1983.12004376.CrossRefGoogle Scholar
  7. Aware Electronics. (2018). RM specs. https://www.aw-el.com/specs.htm.
  8. Barbosa, S. M., Steinitz, G., Piatibratova, O., Silva, M. E., & Lago, P. (2007). Radon variability at the Elat granite, Israel: Heteroscedasticity and nonlinearity. Geophysical Research Letters.  https://doi.org/10.1029/2007GL030065.Google Scholar
  9. Barde-Cabusson, S., Finizola, A., Revil, A., Ricci, T., Piscitelli, S., Rizzo, E., et al. (2009). New geological insights and structural control on fluid circulation in La Fossa cone (Vulcano, Aeolian Islands, Italy). Journal of Volcanology and Geothermal Research, 185(3), 231–245.  https://doi.org/10.1016/j.jvolgeores.2009.06.002.CrossRefGoogle Scholar
  10. CIATF, C. I. d. A. d. T. (2018). Consejo Insular de Aguas de Tenerife. https://www.aguastenerife.org/.
  11. Carracedo, J. C. (1994). The canary islands: An example of structural control on the growth of large oceanic-island volcanoes. Journal of Volcanology and Geothermal Research, 60(3), 225–241.  https://doi.org/10.1016/0377-0273(94)90053-1.CrossRefGoogle Scholar
  12. Carracedo, J. C., Badiola, E. R., Guillou, H., Paterne, M., Scaillet, S., Torrado, F. J. P., et al. (2007). Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. GSA Bulletin, 119(9–10), 1027–1051.  https://doi.org/10.1130/B26087.1.CrossRefGoogle Scholar
  13. Carracedo, J. C., Guillou, H., Nomade, S., Rodríguez-Badiola, E., Pérez-Torrado, F. J., Rodríguez-González, A., et al. (2011). Evolution of ocean-island rifts: The northeast rift zone of Tenerife, Canary Islands. GSA Bulletin, 123(3–4), 562–584.  https://doi.org/10.1130/B30119.1.CrossRefGoogle Scholar
  14. Cerdeña, I. D., del Fresno, C., & Rivera, L. (2011). New insight on the increasing seismicity during Tenerife’s 2004 volcanic reactivation. Journal of Volcanology and Geothermal Research, 206(1), 15–29.  https://doi.org/10.1016/j.jvolgeores.2011.06.005.CrossRefGoogle Scholar
  15. Chiodini, G., Caliro, S., Cardellini, C., Avino, R., Granieri, D., & Schmidt, A. (2008). Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth and Planetary Science Letters, 274(3), 372–379.  https://doi.org/10.1016/j.epsl.2008.07.051.CrossRefGoogle Scholar
  16. Chiodini, G., Cioni, R., Guidi, M., Raco, B., & Marini, L. (1998). Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13(5), 543–552.  https://doi.org/10.1016/S0883-2927(97)00076-0.CrossRefGoogle Scholar
  17. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., & Ventura, G. (2001). CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. Journal of Geophysical Research: Solid Earth, 106(B8), 16213–16221.  https://doi.org/10.1029/2001JB000246.CrossRefGoogle Scholar
  18. Chiodini, G., Frondini, F., & Raco, B. (1996). Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bulletin of Volcanology, 58(1), 41–50.  https://doi.org/10.1007/s004450050124.CrossRefGoogle Scholar
  19. Cigolini, C., Gervino, G., Bonetti, R., Conte, F., Laiolo, M., Coppola, D., et al. (2005). Tracking precursors and degassing by radon monitoring during major eruptions at Stromboli Volcano (Aeolian Islands, Italy). Geophysical Research Letters.  https://doi.org/10.1029/2005GL022606.Google Scholar
  20. Cigolini, C., Laiolo, M., & Coppola, D. (2007). Earthquake–volcano interactions detected from radon degassing at Stromboli (Italy). Earth and Planetary Science Letters, 257(3), 511–525.  https://doi.org/10.1016/j.epsl.2007.03.022.CrossRefGoogle Scholar
  21. Cox, M. E., Cuff, K. E., & Thomas, D. M. (1980). Variations of ground radon concentrations with activity of Kilauea Volcano, Hawaii. Nature, 288, 74.  https://doi.org/10.1038/288074a0.CrossRefGoogle Scholar
  22. Delfa, S. L., Agostino, I., Morelli, D., & Patanè, G. (2008). Soil radon concentration and effective stress variation at Mt. Etna (Sicily) in the period January 2003–April 2005. Radiation Measurements, 43(7), 1299–1304.  https://doi.org/10.1016/j.radmeas.2008.02.004.CrossRefGoogle Scholar
  23. Eff-Darwich, A., Martín-Luis, C., Quesada, M., de la Nuez, J., & Coello, J. (2002). Variations on the concentration of 222Rn in the subsurface of the volcanic island of Tenerife, Canary Islands. Geophysical Research Letters, 29(22), 2069.  https://doi.org/10.1029/2002GL015387.CrossRefGoogle Scholar
  24. Eff-Darwich, A., Viñas, R., Soler, V., de la Nuez, J., & Quesada, M. L. (2008). Natural air ventilation in underground galleries as a tool to increase radon sampling volumes for geologic monitoring. Radiation Measurements, 43(8), 1429–1436.  https://doi.org/10.1016/j.radmeas.2008.05.006.CrossRefGoogle Scholar
  25. Faimon, J., Troppová, D., Baldík, V., & Novotný, R. (2011). Air circulation and its impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). International Journal of Climatology, 32(4), 599–623.  https://doi.org/10.1002/joc.2298.CrossRefGoogle Scholar
  26. Falsaperla, S., Behncke, B., Langer, H., Neri, M., Salerno, G. G., Giammanco, S., et al. (2014). “Failed” eruptions revealed by pattern classification analysis of gas emission and volcanic tremor data at Mt Etna, Italy. International Journal of Earth Sciences, 103(1), 297–313.  https://doi.org/10.1007/s00531-013-0964-7.CrossRefGoogle Scholar
  27. Farrujia, I. (1989). Informe hidrogeológico galería Río de Guía (Vol. Planificación Hidráulica del Cabildo de Tenerife). Santa Cruz de Tenerife: Consejo Insular Aguas de Tenerife.Google Scholar
  28. Finizola, A., Sortino, F., Lénat, J.-F., & Valenza, M. (2002). Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. Journal of Volcanology and Geothermal Research, 116(1), 1–18.  https://doi.org/10.1016/S0377-0273(01)00327-4.CrossRefGoogle Scholar
  29. Giammanco, S., Gurrieri, S., & Valenza, M. (1999). Geochemical investigations applied to active fault detection in a volcanic area: the North–East Rift on Mt. Etna (Sicily, Italy). Geophysical Research Letters, 26(13), 2005–2008.  https://doi.org/10.1029/1999GL900396.CrossRefGoogle Scholar
  30. Giammanco, S., Immè, G., Mangano, G., Morelli, D., & Neri, M. (2009). Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy). Applied Radiation and Isotopes, 67(1), 178–185.  https://doi.org/10.1016/j.apradiso.2008.09.007.CrossRefGoogle Scholar
  31. Gregorič, A., Zidanšek, A., & Vaupotič, J. (2011). Dependence of radon levels in Postojna Cave on outside air temperature. Natural Hazards and Earth System Sciences, 11(5), 1523–1528.  https://doi.org/10.5194/nhess-11-1523-2011.CrossRefGoogle Scholar
  32. Hernández, P. A., Padilla, G., Barrancos, J., Melián, G., Padrón, E., Asensio-Ramos, M., et al. (2017). Geochemical evidences of seismo-volcanic unrests at the NW rift zone of Tenerife, Canary Islands, inferred from diffuse CO2 emission. Bulletin of Volcanology, 79(4), 30.  https://doi.org/10.1007/s00445-017-1109-9.CrossRefGoogle Scholar
  33. Hernández, P., Pérez, N., Salazar, J., Sato, M., Notsu, K., & Wakita, H. (2000). Soil gas CO2, CH4, and H2 distribution in and around Las Cañadas caldera, Tenerife, Canary Islands, Spain. Journal of Volcanology and Geothermal Research, 103(1), 425–438.  https://doi.org/10.1016/S0377-0273(00)00235-3.CrossRefGoogle Scholar
  34. Kowalczk, A. J., & Froelich, P. N. (2010). Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breathe? Earth and Planetary Science Letters, 289(1), 209–219.  https://doi.org/10.1016/j.epsl.2009.11.010.CrossRefGoogle Scholar
  35. Laiolo, M., Ranaldi, M., Tarchini, L., Carapezza, M. L., Coppola, D., Ricci, T., et al. (2016). The effects of environmental parameters on diffuse degassing at Stromboli volcano: Insights from joint monitoring of soil CO2 flux and radon activity. Journal of Volcanology and Geothermal Research, 315, 65–78.  https://doi.org/10.1016/j.jvolgeores.2016.02.004.CrossRefGoogle Scholar
  36. Liuzzo, M., Gurrieri, S., Giudice, G., & Giuffrida, G. (2013). 10 years of soil CO2 continuous monitoring on Mt Etna: Exploring the relationship between processes of soil degassing and volcanic activity. Geochemistry, Geophysics, Geosystems, 14(8), 2886–2899.  https://doi.org/10.1002/ggge.20196.CrossRefGoogle Scholar
  37. López, C., Blanco, M. J., Abella, R., Brenes, B., Cabrera Rodríguez, V. M., Casas, B., et al. (2012). Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 submarine eruption. Geophysical Research Letters, 39(13), 1.  https://doi.org/10.1029/2012GL051846.CrossRefGoogle Scholar
  38. Martí, J., & Gudmundsson, A. (2000). The Las Cañadas caldera (Tenerife, Canary Islands): An overlapping collapse caldera generated by magma-chamber migration. Journal of Volcanology and Geothermal Research, 103(1), 161–173.  https://doi.org/10.1016/S0377-0273(00)00221-3.CrossRefGoogle Scholar
  39. Martín-Luis, C., Quesada, M., Eff-Darwich, A., De la Nuez, J., Coello, J., Ahijado, A., et al. (2002). A new strategy to measure radon in an active volcanic island (Tenerife, Canary Islands). Environmental Geology, 43(1), 72–78.  https://doi.org/10.1007/s00254-002-0606-z.Google Scholar
  40. Martin-Luis, M. C., Steinitz, G., Soler, V., Quesada, M. L., & Casillas, R. (2015). 222Rn and CO2 at Las Cañadas Caldera (Tenerife, Canary Islands). The European Physical Journal Special Topics, 224(4), 641–657.  https://doi.org/10.1140/epjst/e2015-02397-7.CrossRefGoogle Scholar
  41. Massman, W. J. (2006). Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model. Journal of Geophysical Research: Biogeosciences.  https://doi.org/10.1029/2006JG000163.Google Scholar
  42. Melián, G., Tassi, F., Pérez, N., Hernández, P., Sortino, F., Vaselli, O., et al. (2012). A magmatic source for fumaroles and diffuse degassing from the summit crater of Teide Volcano (Tenerife, Canary Islands): A geochemical evidence for the 2004–2005 seismic–volcanic crisis. Bulletin of Volcanology, 74(6), 1465–1483.  https://doi.org/10.1007/s00445-012-0613-1.CrossRefGoogle Scholar
  43. Milanolo, S., & Gabrovšek, F. (2009). Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina. Boundary-Layer Meteorology, 131(3), 479–493.  https://doi.org/10.1007/s10546-009-9375-5.CrossRefGoogle Scholar
  44. Neri, M., Ferrera, E., Giammanco, S., Currenti, G., Cirrincione, R., Patanè, G., et al. (2016). Soil radon measurements as a potential tracer of tectonic and volcanic activity. Scientific Reports, 6, 24581.CrossRefGoogle Scholar
  45. Neumann, E. R., Wulff-Pedersen, E., Simonsen, S. L., Pearson, N. J., Martí, J., & Mitjavila, J. (1999). Evidence for fractional crystallization of periodically refilled magma Chambers in Tenerife, Canary Islands. Journal of Petrology, 40(7), 1089–1123.  https://doi.org/10.1093/petroj/40.7.1089.CrossRefGoogle Scholar
  46. Notsu, K., Sugiyama, K., Hosoe, M., Uemura, A., Shimoike, Y., Tsunomori, F., et al. (2005). Diffuse CO2 efflux from Iwojima volcano, Izu-Ogasawara arc, Japan. Journal of Volcanology and Geothermal Research, 139(3), 147–161.  https://doi.org/10.1016/j.jvolgeores.2004.08.003.CrossRefGoogle Scholar
  47. Oversby, V. M., Lancelot, J., & Gast, P. W. (1971). Isotopic composition of lead in volcanic rocks from Tenerife, Canary Islands. Journal of Geophysical Research, 76(14), 3402–3413.  https://doi.org/10.1029/JB076i014p03402.CrossRefGoogle Scholar
  48. Padrón, E., Pérez, N. M., Rodríguez, F., Melián, G., Hernández, P. A., Sumino, H., et al. (2015). Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands. Bulletin of Volcanology, 77(4), 28.  https://doi.org/10.1007/s00445-015-0914-2.CrossRefGoogle Scholar
  49. Pérez, N. M., Hernández, P. A., Padrón, E., Melián, G., Marrero, R., Padilla, G., et al. (2007). Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at tenerife, Canary Islands. Pure and Applied Geophysics, 164(12), 2431–2448.  https://doi.org/10.1007/s00024-007-0280-x.CrossRefGoogle Scholar
  50. Perrier, F., & Girault, F. (2013). Harmonic response of soil radon-222 flux and concentration induced by barometric oscillations. Geophysical Journal International, 195(2), 945–971.  https://doi.org/10.1093/gji/ggt280.CrossRefGoogle Scholar
  51. Perrier, F., & Le Mouël, J.-L. (2016). Stationary and transient thermal states of barometric pumping in the access pit of an underground quarry. Science of the Total Environment, 550, 1044–1056.  https://doi.org/10.1016/j.scitotenv.2016.01.125.CrossRefGoogle Scholar
  52. Perrier, F., Morat, P., & Le Mouël, J.-L. (2001). Pressure induced temperature variations in an underground quarry. Earth and Planetary Science Letters, 191(1), 145–156.  https://doi.org/10.1016/S0012-821X(01)00411-3.CrossRefGoogle Scholar
  53. Perrier, F., & Richon, P. (2010). Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing. Journal of Environmental Radioactivity, 101(4), 279–296.  https://doi.org/10.1016/j.jenvrad.2009.12.003.CrossRefGoogle Scholar
  54. Perrier, F., Richon, P., Crouzeix, C., Morat, P., & Le Mouël, J.-L. (2003). Radon-222 signatures of natural ventilation regimes in an underground quarry. Journal of Environmental Radioactivity, 71(1), 17–32.  https://doi.org/10.1016/S0265-931X(03)00117-6.CrossRefGoogle Scholar
  55. Perrier, F., Richon, P., Gautam, U., Tiwari, D. R., Shrestha, P., & Sapkota, S. N. (2007). Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel. Journal of Environmental Radioactivity, 97(2), 220–235.  https://doi.org/10.1016/j.jenvrad.2007.06.003.CrossRefGoogle Scholar
  56. Pinault, J.-L., & Baubron, J.-C. (1997). Signal processing of diurnal and semidiurnal variations in radon and atmospheric pressure: A new tool for accurate in situ measurement of soil gas velocity, pressure gradient, and tortuosity. Journal of Geophysical Research: Solid Earth, 102(B8), 18101–18120.  https://doi.org/10.1029/97JB00971.CrossRefGoogle Scholar
  57. Pineau, F., & Javoy, M. (1983). Carbon isotopes and concentrations in mid-oceanic ridge basalts. Earth and Planetary Science Letters, 62(2), 239–257.  https://doi.org/10.1016/0012-821X(83)90087-0.CrossRefGoogle Scholar
  58. Prutkin, I., Vajda, P., & Gottsmann, J. (2014). The gravimetric picture of magmatic and hydrothermal sources driving hybrid unrest on Tenerife in 2004/5. Journal of Volcanology and Geothermal Research, 282, 9–18.  https://doi.org/10.1016/j.jvolgeores.2014.06.003.CrossRefGoogle Scholar
  59. Richon, P., Sabroux, J.-C., Halbwachs, M., Vandemeulebrouck, J., Poussielgue, N., Tabbagh, J., et al. (2003). Radon anomaly in the soil of Taal volcano, the Philippines: A likely precursor of the M 7.1 Mindoro earthquake (1994). Geophysical Research Letters, 30(9), 1.  https://doi.org/10.1029/2003GL016902.CrossRefGoogle Scholar
  60. Romero Ruiz, C. (1989). Las manifestaciones volcánicas históricas del Archipiélago Canario. La Laguna: Tesis Universidad de La Laguna.Google Scholar
  61. Seinfeld, J. H., & Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley.Google Scholar
  62. Steinitz, G., Martin-Luis, M. C., & Piatibratova, O. (2015). Indications for solar influence on radon signal in the subsurface of Tenerife (Canary Islands, Spain). The European Physical Journal Special Topics, 224(4), 687–695.  https://doi.org/10.1140/epjst/e2015-02399-5.CrossRefGoogle Scholar
  63. Troll, V. R., & Carracedo, J. C. (2016). chapter 5 - The Geology of Tenerife. In V. R. Troll & J. C. Carracedo (Eds.), The Geology of the Canary Islands (pp. 227–355). Amsterdam: Elsevier.CrossRefGoogle Scholar
  64. Viñas, R., Eff-Darwich, A., Soler, V., Martín-Luis, M. C., Quesada, M. L., & de la Nuez, J. (2007). Processing of radon time series in underground environments: Implications for volcanic surveillance in the island of Tenerife, Canary Islands, Spain. Radiation Measurements, 42(1), 101–115.  https://doi.org/10.1016/j.radmeas.2006.07.002.CrossRefGoogle Scholar
  65. Viveiros, F., Marcos, M., Faria, C., Gaspar, J. L., Ferreira, T., & Silva, C. (2017). Soil CO2 degassing path along volcano–tectonic structures in the Pico–Faial–São Jorge Islands (Azores Archipelago, Portugal). Frontiers in Earth Science, 5(50), 1.  https://doi.org/10.3389/feart.2017.00050. [Original Research].Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pedro Torres-González
    • 1
    Email author
  • David Moure-García
    • 1
  • Natividad Luengo-Oroz
    • 1
  • Víctor Villasante-Marcos
    • 2
  • Vicente Soler
    • 3
  • Ilazkiñe Iribarren
    • 1
  • Ana Jiménez-Abizanda
    • 4
  • José García-Fraga
    • 4
  1. 1.Instituto Geográfico Nacional, Centro Geofísico de CanariasSanta Cruz de TenerifeSpain
  2. 2.Instituto Geográfico Nacional, Observatorio Geofísico CentralMadridSpain
  3. 3.Instituto de Productos Naturales y Agrobiología CSIC, Estación Volcanológica de CanariasSan Cristóbal de La LagunaSpain
  4. 4.Departamento Química (UD Química Analítica)Universidad de La Laguna, Facultad de CienciasSan Cristóbal de La LagunaSpain

Personalised recommendations