Pure and Applied Geophysics

, Volume 176, Issue 8, pp 3391–3409 | Cite as

Source Parameters and Scaling Relations of Local Earthquakes from a Strong Motion Network in Izmir, Western Turkey

  • Elcin GokEmail author


This study reports the estimation of source parameters in and around Izmir, western Anatolia (Turkey), using data recorded by 18 strong motion stations belonging to the local accelerometer array (IzmirNET). The displacement spectra of SH waves are calculated for 55 earthquakes with a moment magnitude range (Mw) of 3.4 to 5.7 recorded by at least ten stations. The corner frequency (f0), spectral level and fmax are acquired from the displacement spectra in order to analyse the source characteristics of the events using Brune’s source model. Seismic moment (M0) values are computed between 12.74 and 17.93 Nm, spectral level (Ω0) values are detected between 3.17 and 6.44 nm s, source radius (r) values are calculated from 0.45 to 2.28 km, and seismic energy values are estimated between 2.07 × 1013 and 6.45 × 1020 erg. Computed stress drop (Δσ) values vary from 0.72 to 346.9 bar, and this result is significantly lower than the values of 0.017 and 647.6 bar reported for the Marmara region, northwestern Anatolia (Turkey), and slightly lower than the source sizes of the events of between 0.0862 and 5.1042 km. However, similar results were found for seismic moments (Koseoglu et al., in J Seismol 18:651–669,, 2014). From the results of the present study, it is concluded that scattering in seismic moment, stress drop and hypocentral distance during large earthquakes is observed by an increase in f0 and fmax , which is related to the complex tectonism of the study area.


Source parameters seismic moment stress drop IzmirNET 



Special thanks to anonymous reviewers for their comments and constructive criticism, which greatly improved this paper. This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) project 106G159.


  1. Abercrombie, R. E. (1995). Earthquake source scaling relationships from −1 to 5 ML using seismogram recorded at 2.5-km depth. Journal of Geophysical Research, 100, 24015–24036.CrossRefGoogle Scholar
  2. Abercrombie, R. E., & Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162, 406–424.CrossRefGoogle Scholar
  3. Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 72, 1217–1231.CrossRefGoogle Scholar
  4. Aki, K. (1987). Magnitude–frequency relation for small earthquakes: A clue to the origin of f max of large earthquakes. Journal Geophysical Research, 92, 1349–1355.CrossRefGoogle Scholar
  5. Akıncı, A., Taktak, A. G., & Ergintav, S. (1994). Attenuation of coda waves in Western Anatolia. PEPI, 87, 155–165.Google Scholar
  6. Allmann, B., & Shearer, P. (2007). Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. Journal of Geophysical Research, 112, B04305. Scholar
  7. Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114, B01310. Scholar
  8. Ampuero, J. P., Ripperger, J., & Mai, P. M. (2006). Properties of dynamic earthquake ruptures with heterogeneous stress drop. In R. Abercrombie (Ed.), Earthquakes: Radiated energy and the physics of faulting, Geophys. Monogr. Ser (Vol. 170, pp. 255–261). Washington DC: AGU.CrossRefGoogle Scholar
  9. Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(5), 1969–1993.Google Scholar
  10. Archuleta, R. J., Cranswick, E., Mueller, C., & Spudich, P. (1982). Source parameters of the 1980 Mammoth Lakes, California, earthquake sequence. Journal of Geophysical Research, 87, 4595–4607.CrossRefGoogle Scholar
  11. Askan, A., Sisman, F. N., & Pekcan, O. (2014). A regional near-surface high frequency spectral attenuation (kappa) model for northwestern Turkey. Soil Dynamics and Earthquake Engineering, 65, 113–125.CrossRefGoogle Scholar
  12. Atkinson, G., & Hanks, T. (1995). A high-frequency magnitude scale. Bulletin of the Seismological Society of America, 85, 825–833.Google Scholar
  13. Bjerrum, L. W., Sørensen, M. B., Ottemöller, L., & Atakan, K. (2013). Sensitivity of ground motions due to input parameter uncertainty: A case study for Izmir, Turkey. Journal of Seismology, 17(4), 1223–1252.CrossRefGoogle Scholar
  14. Boore, D. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73(6), 1865–1894.Google Scholar
  15. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.CrossRefGoogle Scholar
  16. Brune, J. N. (1971). Correction. Journal of Geophysical Research, 76, 5002.CrossRefGoogle Scholar
  17. Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target regions: Application to Central Europe and rock sites. Journal of Seismology, 10, 137. Scholar
  18. Debski, W. (2018). Dynamic stress drop for selected seismic events at Rudna copper mine, Poland. Pure and Applied Geophysics. Scholar
  19. Drouet, S., Cotton, F., & Gueguen, P. (2010). vS30, κ, regional attenuation and M w from small magnitude events accelerograms. Geophysical Journal International, 182(2), 880–898.CrossRefGoogle Scholar
  20. Franceschina, G., Gentili, S., & Bressan, G. (2013). Source parameters scaling of the 2004 Kobarid (Western Slovenia) seismic sequence. Physics of the Earth and Planetary Interiors, 222, 58–75.CrossRefGoogle Scholar
  21. Goebel, T. H. W., Hauksson, E., Shearer, P. M., & Ampuero, J. P. (2015). Stress-drop heterogeneity within tectonically complex regions: A case study of San Gorgonio Pass, southern California. Geophysical Journal International, 2015(202), 514–528.CrossRefGoogle Scholar
  22. Gok, E., Chávez-García, F. J., & Polat, O. (2014). Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey. Physics of the Earth and Planetary Interiors, 229, 88–97.CrossRefGoogle Scholar
  23. Gok, E., & Polat, O. (2014). An assessment of the microseismic activity and focal mechanisms of the Izmir (Smyrna) area from a new local network (IzmirNET). Tectonophysics, 635, 154–164.CrossRefGoogle Scholar
  24. Hanks, T. C. (1982). Fmax. BSSA, 72(6), 1867–1879.Google Scholar
  25. Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84(5), 2348–2350, 9B0059.CrossRefGoogle Scholar
  26. Hanks, T. C., & Wyss, M. (1972). The use body-wave spectra in the determination of seismic source parameters. Bulletin of the Seismological Society of America, 62, 561–589.Google Scholar
  27. Haskell, N. A. (1964). Total energy and energy spectral density of elastic-wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.Google Scholar
  28. Ide, S., Beroza, G. C., Prejean, S. G., & Ellworth, W. L. (2003). Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. Journal of Geophysical Research, 108(B5), 2271. Scholar
  29. Iwakiri, K., & Hoshiba, M. (2012). High-frequency (10 Hz) content of the initial fifty seconds of waveforms from the 2011 Off the Pacific Coast of Tohoku Earthquake. Bulletin of the Seismological Society of America. Scholar
  30. Kanamori, H., & Allen, C. R. (1985). Earthquake repeat time and average stress drop. In: 5th Ewing symposium on earthquake source mechanics (submitted). Google Scholar
  31. Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65, 1073–1095.Google Scholar
  32. Kanamori, H. E., Hauksson, L. K. Hutton, & Jones, L. M. (1993). Determination of earthquake energy release and ML using Terrascope. Bulletin of the Seismological Society of America, 83, 330–346.Google Scholar
  33. Kanamori, H., & Heaton, T. (2000). Microscopic and macroscopic physics of earthquakes. Geophysical Monograph-American Geophysical Union, 120, 147–164.Google Scholar
  34. Keilis-Borok, V. I. (1960). Investigation of the Mechanism of Earthquakes. Soviet Research in Geophysics (English translation), 4, 29.Google Scholar
  35. Koseoglu, A., Özel, N. M. Barış, Üçer, S. B., & Ottemöller, L. (2014). Spectral determination of source parameters in the Marmara Region. Journal of Seismology, 18, 651–669. Scholar
  36. Kumar, R., Gupta, S. C., & Kumar, A. (2015). Source parameters and f max in lower Siang region of Arunachallesser Himalaya. Arabian Journal of Geosciences, 2015(8), 255–265.CrossRefGoogle Scholar
  37. Kumar, A., Kumar, A., Gupta, S. C., Jindal, A. K., & Ghangas, V. (2013). Source parameters of local earthquakes in bilaspur region of Himachal Lesser Himalaya. Arabian Journal of Geosciences. Scholar
  38. Kurtulmus, T. O., & Akyol, N. (2015). Separation of source, site and near-surface attenuation effects in western Turkey. Natural Hazards, 77, 1515–1532.CrossRefGoogle Scholar
  39. Malagnini, L., Akıncı, A., Herrmann, R. B., Pino, N. A., & Scognamiglio, L. (2002). Characteristics of the ground motion in northeastern Italy. Bulletin of the Seismological Society of America, 92(6), 2186–2204.CrossRefGoogle Scholar
  40. McGarr, A. (1999). On relating apparent stress to the stress causing earthquake fault slip. Journal of Geophysical Research, 104, 3001–3003.CrossRefGoogle Scholar
  41. Neighbors, C., Cohran, E. S., Ryan, K. J., & Kaiser, A. E. (2017). Solvingfor source parameters using nested array data: A case study from the Canterbury, New Zealand Earthquake Sequence. Pure and Applied Geophysics, 174(2017), 875–893.CrossRefGoogle Scholar
  42. Ottemöller, L., Voss, P., & Havskov, J. (2018). Seisan earthquake analysis software for Windows, Solaris, Linux and Macosx. Software Manual V.11.0Google Scholar
  43. Paidi, V., Kumar, A., Gupta, S. C., & Kumar, A. (2015). Estimation of source parameters of local earthquakes in the environs of Koldam site. Arabian Journal of Geosciences. Scholar
  44. Papageorgiou, A. S., & Aki, K. (1983a). A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong around motion. I. Description of the model. Bulletin of the Seismological Society of America, 73, 693–722.Google Scholar
  45. Papageorgiou, A. S., & Aki, K. (1983b). A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. I1. Application of the model. Bulletin of the Seismological Society of America, 73, 953–978.Google Scholar
  46. Papageorgiu, A. (1988). On two characteristic frequencies of acceleration spectra: Patch corner frequency and f max. Bulletin of the Seismological Society of America, 78, 509–529.Google Scholar
  47. Polat, O., Ceken, U., Uran, T., Gok, E., Yilmaz, N., Beyhan, M., et al. (2009). IzmirNet: A strong-motion network in metropolitan Izmir, Western Anatolia, Turkey. Seismological Research Letters, 80(5), 831–838.CrossRefGoogle Scholar
  48. Prakash, R., Prajapati, S. K., & Sristava, H. N. (2018). Source parameters of the Bay of Bengal earthquake of 21 May 2014 and related seismotectonics of 85 E and 90 E ridges. Journal of Asian Earth Sciences, 151, 250–258.CrossRefGoogle Scholar
  49. Prejean, S. G., & Ellsworth, W. L. (2001). Observations of earthquake source parameters and attenuation at 2 km depth in the Long Valley Caldera, Eastern California. Bulletin of the Seismological Society of America, 91, 165–177.CrossRefGoogle Scholar
  50. Prieto, G. A., Parker, R. L., Vernon, F. L., Shearer, P. M., & Thomson, D. J. (2006). Uncertainties in earthquake source spectrum estimation using empirical Green functions in AGU. Monograph on Radiated Energy and the Physics of Earthquake Faulting. Scholar
  51. Prieto, G. A., Shearer, P. M., Vernon, F. L., & Kilb, D. (2004). Earthquake source scaling and self-similarity estimation from stacking P and S spectra. Journal of Geophysical Research, 109, B08310. Scholar
  52. Ruff, L. J. (1999). Dynamic stress drop of recent earthquakes: Variations within subduction zones. In J. Sauber & R. Dmowska (Eds.), Seismogenic and tsunamigenic processes in shallow subduction zones. Pageoph Topical Volumes. Basel: Birkhäuser.Google Scholar
  53. Rundle, J. B., Kanamori, H., & McNally, K. C. (1984). An inhomogeneous fault model for gaps, asperities, barriers, and seismicity migration. Journal of Geophysical Research, 89, 10219–10231.CrossRefGoogle Scholar
  54. Sato, H., & Fehler, M. C. (1998). Seismic wave propagation and scattering in the heterogenous earth. New York: Springer. ISBN #0-387-98329-5.Google Scholar
  55. Sato, H., Fehler, M., & Wu, R. (2002). Scattering and attenuation of seismic waves in the lithosphere. International handbook of earthquake and engineering seismology (Vol. 81A, pp. 195–208). San Diego: Academic Press.CrossRefGoogle Scholar
  56. Shearer, P. M., Prieto, G. A., & Hauksson, E. (2006). Comprehensive analysis of earthquake source spectra in southern California. Journal of Geophysical Research, 111, B06303. Scholar
  57. Taymaz, T., Jackson, J., & McKenzie, D. P. (1991). Active tectonics of the North and central Aegean Sea. Geophysical Journal International, 106, 433–490.CrossRefGoogle Scholar
  58. Tukey, J. W. (1960). Conclusions vs decisions. Technometrics, 2(4), 423–433.CrossRefGoogle Scholar
  59. Wessel, P., & Smith, W. H. F. (1995). New version of the generic mapping tools (GMT). EOS Transactions, 76, 329.CrossRefGoogle Scholar
  60. Wu, M., Rudnicki, J. W., Kuo, C. H., & Keer, L. M. (1991). Surface deformation and energy release rates for constant stress drop slip zones in an elastic half-space. Journal of Geophysical Research, 96, 16509–16524.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Engineering Faculty, Department of GeophysicsDokuz Eylul UniversityIzmirTurkey

Personalised recommendations