Advertisement

Simple Models of Complex Slip Distribution? A Case Study of the 2011 Mw 7.1 Van (Eastern Turkey) Earthquake

  • Jiawei Li
  • Zhongliang WuEmail author
  • Changsheng Jiang
  • Shiyong Zhou
  • Yan Zhang
Article
  • 28 Downloads

Abstract

We evaluate the presently proposed simple models for slip distribution, including the homogeneous slip model, the triangular slip model, the k-square model, the slip tip taper model, and the restricted stochastic source model, to investigate which is most consistent with ‘real-world’ slip distribution inverted. We take the 2011 Van (Eastern Turkey) Mw 7.1 earthquake as an example, considering six inversion results of slip distribution. The Akaike information criterion (AIC) is used to evaluate the models. The evaluation shows that for six inversion results, qualitatively, the k-square model, with three degrees of freedom, seems most consistent with the real-world slip distribution overall.

Keywords

Earthquake rupture process slip distribution source inversion validation (SIV) Akaike information criterion (AIC) 2011 Van (Eastern Turkey) earthquake 

Notes

Acknowledgements

We thank Prof. Max Wyss for helpful remarks on the text. We thank Prof. Lisheng Xu, Prof. Yong Zhang and Dr. Xu Zhang for discussions about the finite-fault seismic source inversion.

References

  1. Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical Mathematics, 22, 203–217.CrossRefGoogle Scholar
  2. Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716–723.CrossRefGoogle Scholar
  3. Aki, K. (1968). Seismic displacement near a fault. Journal of Geophysical Research, 73, 5359–5376.CrossRefGoogle Scholar
  4. Altiner, Y., Söhne, W., Güney, C., Perlt, J., Wang, R., & Muzli, M. (2013). A geodetic study of the 23 October 2011 Van, Turkey earthquake. Tectonophysics, 588, 118–134.CrossRefGoogle Scholar
  5. Burjánek, J., & Zahradník, J. (2007). Dynamic stress field of a kinematic earthquake source model with k-squared slip distribution. Geophysical Journal International, 171, 1082–1097.CrossRefGoogle Scholar
  6. Causse, M., Chaljub, E., Cotton, F., Cornou, C., & Bard, P.-Y. (2009). New approach for coupling k −2 and empirical Green’s functions: Application to the blind prediction of broad-band ground motion in the Grenoble basin. Geophysical Journal International, 179, 1627–1644.CrossRefGoogle Scholar
  7. Causse, M., Cotton, F., & Mai, P. M. (2010). Constraining the roughness degree of slip heterogeneity. Journal of Geophysical Research, 115, B05304.CrossRefGoogle Scholar
  8. Cultrera, G., Cirella, A., Spagnuolo, E., Herrero, A., Tinti, E., & Pacor, F. (2009). Variability of kinematic source parameters and its implication on the choice of the design scenario. Bulletin of the Seismological Society of America, 100, 941–953.CrossRefGoogle Scholar
  9. Elliott, J. R., Copley, A. C., Holley, R., Scharer, K., & Parsons, B. (2013). The 2011 M W 7.1 Van (Eastern Turkey) earthquake. Journal of Geophysical Research, 118, 1619–1637.Google Scholar
  10. Gallovič, F., & Brokešová, J. (2007). Hybrid k-squared source model for strong ground motion simulations: Introduction. Physics of the Earth and Planetary Interiors, 160, 34–50.CrossRefGoogle Scholar
  11. Haskell, N. A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.Google Scholar
  12. Haskell, N. A. (1966). Total energy and energy spectral density of elastic wave radiation from propagating faults. Part II. A statistical source model. Bulletin of the Seismological Society of America, 56, 125–144.Google Scholar
  13. Haskell, N. A. (1969). Elastic displacements in the near-field of a propagating fault. Bulletin of the Seismological Society of America, 59, 865–908.Google Scholar
  14. Hayes, G. (2011). Preliminary finite fault results for the Oct 23, 2011 M W 7.1 38.7520, 43.4560 earthquake (version 1). https://earthquake.usgs.gov/earthquakes/eventpage/usp000j9rr#finite-fault, last Accessed 8 Aug 2018.
  15. Herrero, A., & Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bulletin of the Seismological Society of America, 84, 1216–1228.Google Scholar
  16. Ide, S. (2015). Slip inversion. In H. Kanamori (Ed.), Treatise on Geophysics: Earthquake Seismology (2nd ed., pp. 215–241). Amsterdam: Elsevier.CrossRefGoogle Scholar
  17. Ji, C., Wald, D. J., & Helmberger, D. V. (2002). Source description of the 1999 Hector Mine, California earthquake. Part I: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92, 1192–1207.CrossRefGoogle Scholar
  18. Konca, A. O. (2015). Rupture process of 2011 M W 7. 1 Van, Eastern Turkey earthquake from joint inversion of strong-motion, high-rate GPS, teleseismic, and GPS data. Journal of Seismology, 19, 969–988.CrossRefGoogle Scholar
  19. Mai, P. M., & Beroza, G. C. (2003). A hybrid method for calculating near-source, broadband seismograms: Application to strong motion prediction. Physics of the Earth and Planetary Interiors, 137, 183–199.CrossRefGoogle Scholar
  20. Mai, P. M., Schorlemmer, D., Page, M., Ampuero, J. P., Asano, K., Causse, M., et al. (2016a). The earthquake-source inversion validation (SIV) project. Seismological Research Letters, 87, 690–707.CrossRefGoogle Scholar
  21. Mai, P. M., Shearer, P., Ampuero, J.-P., & Lay, T. (2016b). Standards for documenting finite-fault earthquake rupture models. Seismological Research Letters, 87, 695–707.  https://doi.org/10.1785/0220150204.CrossRefGoogle Scholar
  22. Mai, P. M., & Thingbaijam, K. K. S. (2014). SRCMOD: An online database of finite source rupture models. Seismological Research Letters, 85, 1348–1357.CrossRefGoogle Scholar
  23. Manighetti, I., Campillo, M., Sammis, C., Mai, P. M., & King, G. (2005). Evidence for self-similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics. Journal of Geophysical Research, 110, B05302.  https://doi.org/10.1029/2004JB003174.CrossRefGoogle Scholar
  24. Ripperger, J., Ampuero, J.-P., Mai, P. M., & Giardini, D. (2007). Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress. Journal of Geophysical Research, 112, B04311.  https://doi.org/10.1029/2006JB004515.CrossRefGoogle Scholar
  25. Ruff, L. J. (1984). Tomographic imaging of the earthquake rupture process. Geophysical Research Letters, 11, 629–632.CrossRefGoogle Scholar
  26. Ruff, L. J. (1987). Tomographic imaging of seismic sources. In G. Nolet (Ed.), Seismic Tomography with Applications in Global Seismology and Exploration Geophysics (pp. 339–381). Dordrecht: D. Reidel Publishing Company.Google Scholar
  27. Ruiz, J., Baumont, D., Bernard, P., & Berge-Thierry, C. (2007). New approach in the kinematic k −2, source model for generating physical slip velocity functions. Geophysical Journal International, 171, 739–754.CrossRefGoogle Scholar
  28. Scholz, C. H., & Lawler, T. M. (2004). Slip tapers at the tips of faults and earthquake ruptures. Geophysical Research Letters, 31, L21609.  https://doi.org/10.1029/2004GL021030.CrossRefGoogle Scholar
  29. Shao, G., & Ji, C. (2011). Preliminary result of the Oct 23, 2011 M W 7.13 Turkey earthquake. http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2011/10/23/turkey.html. last Accessed 8 Aug 2018.
  30. Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70, 59–80.CrossRefGoogle Scholar
  31. Utkucu, M. (2013). 23 October 2011 Van, Eastern Anatolia, earthquake (M W 7.1) and seismotectonics of Lake Van area. Journal of Seismology, 17, 783–805.CrossRefGoogle Scholar
  32. Ward, S. N. (2004). Earthquake simulation by restricted random walks. Bulletin of the Seismological Society of America, 94, 2079–2089.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jiawei Li
    • 1
    • 2
    • 3
  • Zhongliang Wu
    • 4
    Email author
  • Changsheng Jiang
    • 1
  • Shiyong Zhou
    • 2
  • Yan Zhang
    • 1
  1. 1.Institute of Geophysics, China Earthquake AdministrationBeijingChina
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Swiss Seismological Service, Swiss Federal Institute of Technology ZürichZürichSwitzerland
  4. 4.Institute of Earthquake Forecasting, China Earthquake AdministrationBeijingChina

Personalised recommendations