Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 8, pp 3545–3565 | Cite as

Thermochemical Mantle Convection with Drifting Deformable Continents: Main Features of Supercontinent Cycle

  • A. M. Bobrov
  • A. A. BaranovEmail author
Article

Abstract

We employ 2D Cartesian geometry model of thermochemical convection with non-Newtonian rheology and phase transitions, in the presence of floating deformable continents. Using a mantle model with continental crust, lithosphere and the material of the oceanic crust that can be subjected to eclogitization we study the stages of supercontinent cycle: assembly, evolution of supercontinent, its breakup and divergence of continents. Our results show that cold downgoing flows aggregate continents into a supercontinent. After its formation, the convection pattern changes: the subduction zones at the edges of the supercontinent and typical relatively narrow mantle plumes in the subcontinental mantle arise. The lifetime of the supercontinent is about 550 Ma. Typical velocities for continents before collision are 3–10 cm/year, for supercontinent 0.5–1.5 cm/year and after the breakup 4–8 cm/year. Despite the small mobility of the supercontinent, there is no significant warming up of the subcontinental mantle. The temperature anomaly under supercontinent is less than + 50 K and the superplume does not arise. We obtain that the phase transitions at 410 km and 660 km and the eclogitization of the subducted oceanic crust affects the supercontinent cycle significantly. Our results demonstrate certain irregularity of supercontinent cycle. The typical shear stresses in the mantle are less than 30 MPa; in the subduction zones and on the continent borders they are 100–250 MPa. Before the breakup maximum shear stress generated in the supercontinent can reach 200 MPa.

Notes

Acknowledgements

The work is carried out within the framework of the state assignment of the IPE RAS and is supported by the Russian Foundation for Basic Research (project 16-55-12033). The authors would like to thank the two anonymous reviewers, whose thorough reviews helped to improve the manuscript significantly. We are grateful to Louis Moresi, Shijie Zhong, Michael Gurnis, and other authors of the 2D CITCOM code for providing the possibility of using this software.

References

  1. Azuma, S., Yamamoto, S., Ichikawa, H., & Maruyama, S. (2017). Why primordial continents were recycled to the deep: Role of subduction erosion. Geoscience Frontiers, 8, 337–346.  https://doi.org/10.1016/j.gsf.2016.08.001.CrossRefGoogle Scholar
  2. Ballmer, M. D., van Hunen, J., Ito, G., Tackley, P. J., & Bianco, T. A. (2007). Non-hotspot volcano chains originating from small-scale sublithospheric convection. Geophysical Research Letters, 34, L23310.  https://doi.org/10.1029/2007gl031636.CrossRefGoogle Scholar
  3. Bobrov, A. M., & Baranov, A. A. (2016). The mantle convection model with non-Newtonian rheology and phase transitions: The flow structure and stress fields. Izvestiya Physics of the Solid Earth, 52(1), 129–143.  https://doi.org/10.1134/s1069351316010031.CrossRefGoogle Scholar
  4. Bobrov, A. M., & Baranov, A. A. (2018). Modeling of moving deformable continents by active tracers: Closing and opening of oceans, recirculation of oceanic crust. Geodynamics & Tectonophysics, 9(1), 287–307.  https://doi.org/10.5800/gt-2018-9-1-0349.CrossRefGoogle Scholar
  5. Bobrov, A. M., & Trubitsyn, A. P. (2008). Numerical model of the supercontinental cycle stages: integral transfer of the oceanic crust material and mantle viscous shear stresses. Studia Geophysica et Geodaetica, 52, 87–100.  https://doi.org/10.1007/s11200-008-0007-1.CrossRefGoogle Scholar
  6. Bogdanova, S. V., Pisarevsky, S. A., & Li, Z. X. (2009). Assembly and breakup of Rodinia (Some Results of IGCP Project 440). Stratigraphy and Geological Correlation, 17(3), 259–274.  https://doi.org/10.1134/S0869593809030022.CrossRefGoogle Scholar
  7. Corti, G., Bonini, M., Conticelli, S., Innocenti, F., Manetti, P., & Sokoutis, D. (2003). Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma. Earth-Science Reviews, 63, 169–247.  https://doi.org/10.1016/S0012-8252(03)00035-7.CrossRefGoogle Scholar
  8. Dal Zilio, L., Faccenda, M., & Capitanio, F. (2017). The role of deep subduction in supercontinent breakup. Tectonophysics.  https://doi.org/10.1016/j.tecto.2017.03.006.Google Scholar
  9. Di Giuseppe, E., van Hunen, J., Funiciello, F., Faccenna, C., & Giardini, D. (2008). Slab stiffness control of trench motion: Insights from numerical models. Geochemistry, Geophysics, Geosystems, 9, Q02014.  https://doi.org/10.1029/2007gc001776.CrossRefGoogle Scholar
  10. Evans, D. A. D. (2009). The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geological Society, London, Special Publications, 327, 371–404.  https://doi.org/10.1144/SP327.16.CrossRefGoogle Scholar
  11. Fei, Y., Orman, J. V., Li, J., van Westrenen, W., Sanloup, C., Minarik, W., et al. (2004). Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research, 109, B02305.  https://doi.org/10.1029/2003jb002562.CrossRefGoogle Scholar
  12. Gung, Y., Panning, M., & Romanowicz, B. (2003). Global anisotropy and the thickness of continents. Nature, 422, 707–711.  https://doi.org/10.1038/nature01559.CrossRefGoogle Scholar
  13. Gurnis, M. (1988). Large-scale mantle convection and aggregation and dispersal of supercontinents. Nature, 332, 696–699.  https://doi.org/10.1038/332695a0.CrossRefGoogle Scholar
  14. Heron, P. J., & Lowman, J. P. (2011). The effects of supercontinent size and thermal insulation on the formation of mantle plumes. Tectonophysics, 510(1–2), 28–38.  https://doi.org/10.1016/j.tecto.2011.07.002.CrossRefGoogle Scholar
  15. Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., et al. (2008). Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160, 179–210.  https://doi.org/10.1016/j.precamres.2007.04.021.CrossRefGoogle Scholar
  16. Li, Z. X., & Zhong, S. J. (2009). Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics? Physics of the Earth and Planetary Interiors, 176, 143–156.  https://doi.org/10.1016/jpepi.2009.05.004.CrossRefGoogle Scholar
  17. Lobkovsky, L., & Kotelkin, V. (2015). The history of supercontinents and oceans from the standpoint of thermochemical mantle convection. Precambrian Research, 259, 262–277.  https://doi.org/10.1016/j.precamres.2015.01.005.CrossRefGoogle Scholar
  18. Lowman, J. P., & Jarvis, G. T. (1999). Effects of mantle heat source distribution on continental stability. Journal of Geophysical Research, 104(12), 733–746.  https://doi.org/10.1029/1999JB900108.Google Scholar
  19. Lowman, J. P., King, S. D., & Gable, C. W. (2004). Steady plumes in viscously stratified, vigorously convecting, three-dimensional numerical mantle convection models with mobile plates. Geochemistry, Geophysics, Geosystems, 5(1), Q01L01.  https://doi.org/10.1029/2003GC000583.CrossRefGoogle Scholar
  20. Magni, V., Faccenna, C., van Hunen, J., & Funiciello, F. (2013). Delamination vs. break-off: The fate of continental collision. Geophysical Research Letters, 40(2), 285–289.  https://doi.org/10.1002/grl.50090.CrossRefGoogle Scholar
  21. Magni, V., van Hunen, J., Funiciello, F., & Faccenna, C. (2012). Numerical models of slab migration in continental collision zones. Solid Earth, 3(2), 293–306.  https://doi.org/10.5194/se-3-293-2012.CrossRefGoogle Scholar
  22. Maruyama, S. (1994). Plume tectonics. Journal of Geological Society of Japan, 100(1), 24–49.  https://doi.org/10.5575/geosoc.100.24.CrossRefGoogle Scholar
  23. Meert, J. G. (2002). Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Research, 5, 207–215.  https://doi.org/10.1016/S1342-937X(05)70904-7.CrossRefGoogle Scholar
  24. Mitchell, R. N., Kilian, T. M., & Evans, D. A. D. (2012). Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature, 482, 208–211.  https://doi.org/10.1038/nature10800.CrossRefGoogle Scholar
  25. Moresi, L. N., & Gurnis, M. (1996). Constraints on the lateral strength of slabs from three dimensional dynamic flow models. Earth and Planetary Science Letters, 138, 15–28.  https://doi.org/10.1016/0012-821X(95)00221-W.CrossRefGoogle Scholar
  26. Moresi, L. N., & Solomatov, V. (1998). Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus. Geophysical Journal International, 133, 669–682.  https://doi.org/10.1046/j.1365-246x.1998.00521.x.CrossRefGoogle Scholar
  27. Nance, R. D., Murphy, J. B., & Santosh, M. (2014). The supercontinent cycle: A retrospective essay. Gondwana Research, 25, 4–29.  https://doi.org/10.1016/j.gr.2012.12.026.CrossRefGoogle Scholar
  28. Nikishin, A. M., Ziegler, A. P. A., Abbott, D., Brunet, M. F., & Cloetingh, S. (2002). Permo-Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes and mantle dynamics. Tectonophysics, 351, 3–39.  https://doi.org/10.1016/S0040-1951(02)00123-3.CrossRefGoogle Scholar
  29. Pesonen, L. J., Mertanen, S., & Veikkolainen, T. (2012). Paleo-Mesoproterozoic supercontinents—a Paleomagnetic view. Geophysica, 48(1–2), 5–47.Google Scholar
  30. Phillips, B. R., & Bunge, H.-P. (2005). Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planetary Science Letters, 233(1–2), 121–135.  https://doi.org/10.1016/j.epsl.2005.01.041.CrossRefGoogle Scholar
  31. Phillips, B. R., & Bunge, H.-P. (2007). Supercontinent cycles disrupted by strong mantle plumes. Geology, 35(9), 847.CrossRefGoogle Scholar
  32. Piper, J. D. A. (2010). Protopangaea: Paleomagnetic definition of Earth’s oldest (mid-Archaean-Palaeoproterozoic) supercontinent. Journal of Geodynamics, 50(3), 154–165.  https://doi.org/10.1016/j.jog.2010.01.002.CrossRefGoogle Scholar
  33. Pisarevsky, S., Wingate, M., Powell, C., Johnson, S., & Evans, D. (2003). Models of Rodinia assembly and fragmentation. Geological Society, London, Special Publications, 206, 35–55.  https://doi.org/10.1144/GSL.SP.2003.206.01.04.CrossRefGoogle Scholar
  34. Rogers, J. J. W. (1996). A history of continents in the past three billion years. Journal of Geology, 104, 91–107.  https://doi.org/10.1086/629803.CrossRefGoogle Scholar
  35. Rogers, J. J. W., & Santosh, M. (2004). Continents and Supercontinents (p. 308). New York: Oxford Univ. Press.Google Scholar
  36. Rogers, J. J. W., & Santosh, M. (2009). Tectonics and surface effects of the supercontinent Columbia. Gondwana Research, 15, 373–380.  https://doi.org/10.1016/j.gr.2008.06.008.CrossRefGoogle Scholar
  37. Rolf, T., Coltice, N., & Tackley, P. J. (2014). Statistical cyclicity of the supercontinent cycle. Geophysical Research Letters, 41, 2351–2358.  https://doi.org/10.1002/2014GL059595.CrossRefGoogle Scholar
  38. Romanowicz, B. (2009). The thickness of tectonic plates. Science, 324, 474–476.  https://doi.org/10.1126/science.1172879.CrossRefGoogle Scholar
  39. Santosh, M., Arai, T., & Maruyama, S. (2017). Hadean Earth and primordial continents: The credle of prebiotic life. Geoscience Frontiers, 8, 309–327.  https://doi.org/10.1016/j.gsf.2016.07.005.CrossRefGoogle Scholar
  40. Santosh, M., Maruyama, S., & Yamamoto, S. (2009). The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research, 15, 324–341.  https://doi.org/10.1016/j.gr.2008.11.004.CrossRefGoogle Scholar
  41. Schmeling, H., Babeyko, A. Y., Enns, A., Faccenna, C., Funiciello, F., Gerya, T., et al. (2008). A benchmark comparison of spontaneous subduction models Towards a free surface. Physics of the Earth and Planetary Interiors, 171(1e4), 198e223.  https://doi.org/10.1016/j.pepi.2008.06.028.Google Scholar
  42. Schubert, G., Turcotte, D. L., & Olson, P. (2001). Mantle Convection in the Earth and Planets (p. 940). New York: Cambridge Univ. Press.CrossRefGoogle Scholar
  43. Sobolev, A. V., Hoffman, A. W., Kuzmin, D. V., Yaxley, G. M., Arndt, N. T., Chung, S.-L., et al. (2007). The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823), 412–417.  https://doi.org/10.1126/science.%201138113.CrossRefGoogle Scholar
  44. Torsvik, T. (2003). The Rodinia jigsaw puzzle. Science, 300, 1379–1381.  https://doi.org/10.1126/science.1083469.CrossRefGoogle Scholar
  45. Trim, S. J., & Lowman, J. P. (2016). Interaction between the supercontinent cycle and the evolution of intrinsically dense provinces in the deep mantle. Journal of Geophysical Research Solid Earth.  https://doi.org/10.1002/2016jb013285.Google Scholar
  46. Trubitsyn, V. P., Evseev, A. N., Baranov, A. A., & Trubitsyn, A. P. (2008). Influence of an endothermic phase transition on mass transfer between the upper and the lower Mantle. Izv. Phys. Solid Earth, 44(6), 443–455.  https://doi.org/10.1134/S1069351308060013.CrossRefGoogle Scholar
  47. Trubitsyn, V. P., Mooney, W. D., & Abbott, D. A. (2003). Cold cratonic roots and thermal blankets: How continents affect mantle convection. International Geologiy Review, 45(6), 479–496.  https://doi.org/10.2747/0020-6814.45.6.479.CrossRefGoogle Scholar
  48. Turcotte, D. L., & Schubert, G. (2002). Geodynamics (p. 2002). Cambridge: Cambridge Univ. Press.CrossRefGoogle Scholar
  49. Watts, A., Zhong, S. J., & Hunter, J. (2013). The behavior of the lithosphere on seismic to geologic timescales. Annual Review of Earth and Planetary Sciences, 41, 443–468.CrossRefGoogle Scholar
  50. Wolstencroft, M., & Davies, J. H. (2011). Influence of the Ringwoodite-Perovskite transition on mantle convection in spherical geometry as a function of Clapeyron slope and Rayleigh number. Solid Earth, 2, 315–326.  https://doi.org/10.5194/sed-3-713-2011.CrossRefGoogle Scholar
  51. Wolstencroft, M., & Davies, J. H. (2017). Breaking supercontinents; no need to choose between passive or active. Solid Earth, 8, 817–825.  https://doi.org/10.5194/se-8-817-2017.CrossRefGoogle Scholar
  52. Yoshida, M. (2008). Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: Degree one or two? Geophysical Research Letters, 35, L23302.  https://doi.org/10.1029/2008GL036059.CrossRefGoogle Scholar
  53. Yoshida, M. (2010). Temporal evolution of stress state in a supercontinent during mantle reorganization. Geophysical Journal International, 180(1), 1–22.  https://doi.org/10.1111/j.1365-246X.2009.04399.x.CrossRefGoogle Scholar
  54. Yoshida, M. (2013). Mantle temperature under drifting continents during the supercontinent cycle. Geophysical Research Letters, 40(4), 681–686.  https://doi.org/10.1002/grl.50151.CrossRefGoogle Scholar
  55. Yoshida, M., Honda, S., Ootorii, S., & Iwase, Y. (1999). Generation of plumes under a localized high viscosity lid on 3-D spherical shell convection. Geophysical Research Letters, 26(7), 947–950.  https://doi.org/10.1029/1999GL900147.CrossRefGoogle Scholar
  56. Yoshida, M., & Santosh, M. (2014). Mantle convection modeling of the supercontinent cycle: Introversion, extroversion, or a combination? Geoscience Frontiers, 5, 77–81.  https://doi.org/10.1016/j.gsf.2013.06.002.CrossRefGoogle Scholar
  57. Zhang, N., Dang, Z., Huang, C., & Li, Z.-X. (2018). The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geoscience Frontiers, 9(4), 997–1007.  https://doi.org/10.1016/j.gsf.2018.01.010.CrossRefGoogle Scholar
  58. Zhang, S., Li, Zh-X, Evans, D. A. D., Wu, H., Li, H., & Dong, J. (2012). Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth Planetary Science Letters, 353–354, 145–155.  https://doi.org/10.1016/j.epsl.2012.07.034.CrossRefGoogle Scholar
  59. Zhang, N., Zhong, S., & McNamara, A. K. (2009). Supercontinent formation from stochastic collision and mantle convection models. Gondwana Research, 15, 267–275.  https://doi.org/10.1016/j.gr.2008.10.002.CrossRefGoogle Scholar
  60. Zhao, G., Sun, M., Wilde, S. A., & Li, S. (2004). A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1), 91–123.  https://doi.org/10.1016/j.earscirev.2004.02.003.CrossRefGoogle Scholar
  61. Zhong, S., McNamara, A., Tan, E., Moresi, L., & Gurnis, M. (2008). A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochemistry Geophysics Geosystems, 9, 806–815.  https://doi.org/10.1029/2008GC002048.CrossRefGoogle Scholar
  62. Zhong, S., Zhang, N., Li, Z. X., & Roberts, J. H. (2007). Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters, 261, 551–564.  https://doi.org/10.1016/j.epsl.2007.07.049.CrossRefGoogle Scholar
  63. Zhong, S., Zuber, M. T., Moresi, L. N., & Gurnis, M. (2000). Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research: Solid Earth, 105(B5), 11063–11082.  https://doi.org/10.1029/2000JB900003.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations