Advertisement

Revealing the Source of the 27 August 1810 Loreto, Baja California, Tsunami from Historical Evidence and Numerical Modelling

  • María Teresa Ramírez-HerreraEmail author
  • Néstor Corona
  • Rocío Castillo-Aja
Article

Abstract

Historical documents revealed that on 27 August 1810 an earthquake affected the Loreto town and the surrounding region, along 200 km of the coast of Baja California, Mexico, and damage was considerable due to strong ground motions. However, the 1810 Loreto earthquake, unlike other earthquakes of the nineteenth and twentieth centuries, produced an extensive tsunami flooding on the eastern coast of Baja California, from Loreto to La Paz. We report here the historical account of this event and analyse the source of the related tsunami. Based on the historical record and the tectonic setting, we infer that this earthquake was produced along a transform fault, right-lateral strike slip fault, Farallon fault, on the Baja California Gulf. However, the associated tsunami was disproportionally large if compared with the earthquake intensity (IX) and approximate magnitude (7.4 Mw), fault style, and the relatively late tsunami arrival, i.e. an hour after the earthquake, suggesting that a submarine landslide, triggered by this earthquake, was the suspect source for the Loreto tsunami. We present here historical data and a numerical model of the Loreto 1810 tsunami to elucidate the source, using both the 1810 earthquake and a submarine landslide, and confirm that a submarine landslide is most likely the tsunami-triggering mechanism that followed the 1810 earthquake.

Keywords

Tsunami submarine landslide earthquake strike-slip fault Loreto, Baja California 

Notes

Acknowledgements

Ramírez-Herrera acknowledges grant numbers PAPIIT-109117 and CONACYT-SEP-284365. Castillo-Aja acknowledges the postgraduate scholarship by CONACYT and Posgrado de Geografía UNAM. We thank Ann Grant for the English proofreading and editing of this manuscript.

Supplementary material

24_2019_2161_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Abe, T., & Hori, K. (2016). Coastal geomorphology and tsunami disaster by the 2011 off the Pacific coast of Tohoku. In S. Haruyama & T. Sugai (Eds.), Natural disaster and coastal geomorphology. Cham: Springer.  https://doi.org/10.1007/978-3-319-33814-9_3.Google Scholar
  2. Assier-Rzadkieaicz, S., Heinrich, P., Sabatier, P. C., Savoye, B., & Bourillet, J. F. (2000). Numerical modelling of a landslide-generated tsunami: The 1979 Nice event. Pure and Applied Geophysics.  https://doi.org/10.1007/PL00001057.Google Scholar
  3. Atwater, T., & Stock, J. (1998). Pacific-North America plate tectonics of the Neogene southwestern United States: An update. International Geology Review.  https://doi.org/10.1080/00206819809465216.Google Scholar
  4. Ben-Menahem, A., & Rosenman, M. (1972a). Amplitude patterns of tsunami waves from submarine earthquakes. Journal of Geophysical Research, 77(17), 32.CrossRefGoogle Scholar
  5. Ben-Menahem, A., & Rosenman, M. (1972b). Amplitude patterns of tsunami waves from submarine earthquakes. Journal of Geophysical Research.  https://doi.org/10.1029/JB077i017p03097.Google Scholar
  6. Busch, M. M., Arrowsmith, J. R., Umhoefer, P. J., Coyan, J. A., Maloney, S. J., & Gutiérrez, G. M. (2011). Geometry and evolution of rift-margin, normal-fault-bounded basins from gravity and geology, La Paz-Los Cabos region, Baja California Sur, Mexico. Lithosphere.  https://doi.org/10.1130/L113.1.Google Scholar
  7. Cárdenas de la Peña, E. (1969). Visión y presencia de Baja California. México: Secretaría de Marina.Google Scholar
  8. Castro, R. R., Stock, J. M., Hauksson, E., & Clayton, R. W. (2016). Source functions and path effects from earthquakes in the Farallon transform fault region, Gulf of California, Mexico that Occurred on October 2013. Pure and Applied Geophysics,.  https://doi.org/10.1007/s00024-016-1346-4.Google Scholar
  9. Castro, R. R., Stock, J. M., Hauksson, E., & Clayton, R. W. (2017). Active tectonics in the Gulf of California and seismicity (M > 3.0) for the period 2002–2014. Tectonophysics.  https://doi.org/10.1016/j.tecto.2017.02.015.Google Scholar
  10. Clavijero, F. J. (1937). The history of (Lower) California. In S. E. Lake, & A. A. Gray (Eds.), Palo Alto: Standford University Press.Google Scholar
  11. Coyan, M. M., Arrowsmith, J. R., Umhoefer, P., Coyan, J., Kent, G., Driscoll, N., et al. (2013). Geometry and Quaternary slip behavior of the San Juan de los Planes and Saltito fault zones, Baja California Sur, Mexico: Characterization of rift-margin normal faults. Geosphere.  https://doi.org/10.1130/GES00806.1.Google Scholar
  12. Crosby, H. W. (2007). Loreto, capital of Antigua California: The first century. In P. Ganster, O. Arizpe, & A. Ivanova (Eds.), Loreto: The future of the first capital of the Californias (pp. 77–102). San Diego: San Diego State University Press, Institute for Regional Studies of the Californias.Google Scholar
  13. de Santiago, N. (1813). Carta al Exelentísimo Señor Virrey y Capitán General de la Nueva España. 20 de febrero 1813. México: Archivo General de la Nación (AGN), Instituciones Coloniales/Indiferente Virreinal/Cajas 2000-2999/Caja 2356.Google Scholar
  14. Dirección General del Instituto Geográfico y Estadístico. (1886). Equivalencias entre las Pesas y Medidas usadas antiguamente en las Provincias de España y las legales del sistema métrico-decimal. Madrid: Publicadas de Real Orden. Madrid Imp. de la Dirección General del Instituto Geográfico y Estadístico.Google Scholar
  15. Dongeren A. V., Vatvani D., & Ormondt M. V. (2018). Simulation of the 2018 tsunami along the coastal areas in the Palu Bay. In Abstract. American Geophysical Union Fall Meeting 2018, Washington DC, USA.Google Scholar
  16. Ewald, U. (1997). La industria salinera de México, 1560–1994. México: Fondo de Cultura Económica.Google Scholar
  17. Figueroa, A. J. (1970). Catálogo de Sismos Ocurridos en la República Mexicana. Mexico: UNAM.Google Scholar
  18. Figueroa, A. J. (1972). Sismicidad en Baja California. Geofísica Internacional, 12(3), 213–225.Google Scholar
  19. Fletcher, J. M., & Munguía, L. (2000). Active continental rifting in southern Baja California, Mexico: Implication for plate motion partitioning and the transition to seafloor spreading in the Gulf of California. Tectonics, 19(6), 1107–1123.CrossRefGoogle Scholar
  20. Fritz, H. M., Hillaire, J. V., Molière, E., Wei, Y., & Mohammed, F. (2013). Twin tsunamis triggered by the 12 January 2010 Haiti earthquake. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-012-0479-3.Google Scholar
  21. Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbitz, C., et al. (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters.  https://doi.org/10.1029/2007GL029404.Google Scholar
  22. Fuster Ruiz, F. (1997). El final del descubrimiento de América: California, Canada y Alaska (1765–1882); aportación documental del Archivo General de la Marina. Murcia: Univ., Servicio de Publicaciones.Google Scholar
  23. Global Earthquake Model (GEM). (2013). GEM global historical earthquake catalogue GHCE v1.0. https://www.emidius.eu/GEH/download/GEM-GHEC-v1.kmz. Accessed 25 June 2017.
  24. Goff, J. A., Bergman, E., & Solomon, S. C. (1987). Earthquake source mechanisms and transform fault tectonics in the Gulf of California. Journal of Geophysical Research, 92(B10), 10485–10510.CrossRefGoogle Scholar
  25. Goycoechea, F. (1810a). Carta al Exelentísimo Señor Virrey de Nueva España. 2 de septiembre de 1810. In Archivo General de la Nación (AGN), México. Instituciones Coloniales/Indiferente Virreinal/4096 Exp.041. Google Scholar
  26. Goycoechea, F. (1810b). Carta al Muy Poderoso Señor. 13 de octubre de 1810. In Archivo General de la Nación (AGN), México. Operaciones de Guerra/Vol 750. Exp. 9 (pp. 52–54).Google Scholar
  27. Goycoechea, F. (1813). Estadoque manifiesta el número de vasallos de ambos sexos, de indios y gente de razón que tiene el Rey V.S. (Q.D.G.) en esta provincia, y por notas el estado en que se hallan las Misiones que Administran los Religiosos de Santo Domingo. In Archivo General de la Nación (AGN), México. Instituciones Coloniales/Indiferente virreinal/Caja 2356/Exp. 034 (Californias).Google Scholar
  28. Guidoboni, E., & Ebel, J. E. (2009). Earthquakes and tsunamis in the past: A guide to techniques in historical seismology. Cambridge: Cambridge University Press.Google Scholar
  29. Harbitz, C. B., Lovholt, F., Pedersen, G., & Masson, D. G. (2006). Mechanisms of tsunami generation by submarine landslides; a short review. Norsk Geologisk Tidsskrift, 86(3), 255–264.Google Scholar
  30. Heirarzadeh, M., Muhari, A., & Wijanarto, A. B. (2019). Insights on the source of the 28 September 2018 Sulawesi Tsunami, Indonesia base on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176, 25–43.  https://doi.org/10.1007/s00024-018-20165-9.CrossRefGoogle Scholar
  31. Hornbach, M. J., Braudy, N., Briggs, R. W., Cormier, M.-H., Davis, M. B., Diebold, J. B., et al. (2010). High tsunami frequency as a result of combined strike-slip faulting and coastal landslides. Nature Geoscience.  https://doi.org/10.1038/ngeo975.Google Scholar
  32. INEGI. (2013). Contínuo de Elevaciones Mexicano 3.0 (CEM 3.0). México: Instituto Nacional de Estadística y Geografía. http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/descarga.aspx. Accessed 25 June 2018.
  33. ISC-GEM Earthquake Catalogue (2016). ISC-GEM Global Instrumental Earthquake Catalogue Version 3.0. International Seismological Centre.  https://doi.org/10.31905/D808B825.
  34. Iwasaki, S. I., Eguchi, T., Fujinawa, Y., Fujita, I., Watanabe, I., Fukuyama, E., Fujiwara, H., Hishiki, K. (1997). Precise tsunami observation system in deep ocean by an ocean bottom cable network for the prediction of earthquakes and tsunamis. In: Perspectives on tsunami hazard reduction; observations, theory and planning (pp. 47–66). Kluwer Academic Publishers.Google Scholar
  35. Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95, 406–421.  https://doi.org/10.1130/0016-7606(1984).CrossRefGoogle Scholar
  36. Kostoglodov, V., & Pacheco, J. F. (1999). 100 años de Sismicidad en México. Instituto de Geofísica, UNAM. http://usuarios.geofisica.unam.mx/vladimir/sismos/100a%F1os.html. Accessed 20 June 2018.
  37. Kulikov, E. A., Thomson, R. E., & Bornhold, B. D. (1996). The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. Journal of Geophysical Research, 101(C3), 6609–6615.CrossRefGoogle Scholar
  38. Lassépas, U. (1859). De la colonizacion de la Baja California y decreto de 10 de marzo de 1857,/por el ciudadano Ulisses Urbano Lassépas. Primer memorial. V. García Torres, México. https://hdl.handle.net/2027/uc1.31822043015254, Accessed 26 June 2018.
  39. Lopez-Pineda, L. (2005). Source characteristics of the mw 6.2 loreto earthquake of 12 march 2003 that occurred in a transform fault in the middle of the gulf of California, Mexico. Bulletin of the Seismological Society of America, 95(2), 419–430.  https://doi.org/10.1785/0120030227.CrossRefGoogle Scholar
  40. Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., & Kim, J. (2015). On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.  https://doi.org/10.1098/rsta.2014.0376.Google Scholar
  41. McFall, B. C., & Fritz, H. M. (2016). Physical modelling of tsunamis generated by 3D deformable granular landslides on planar and conical island slopes. Proceedings of the Royal Society A, 472(2188), 20160052.  https://doi.org/10.1098/rspa.2016.0052.CrossRefGoogle Scholar
  42. Mohammed, F., & Fritz, H. M. (2012). Physical modeling of tsunamis generated by three-dimensional deformable granular landslides: Landslide generated tsunamis. Journal of Geophysical Research: Oceans.  https://doi.org/10.1029/2011JC007850.Google Scholar
  43. Munguia, L., González, M., Mayer, S., & Aguirre, A. (2006). Seismicity and state of stress in the La Paz-Los Cabos Region, Baja California Sur, Mexico. Bulletin of the Seismological Society of America.  https://doi.org/10.1785/0120050114.Google Scholar
  44. National Geophysical Data Center/World Data Service (NGDC/WDS). (2017a). NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information.  https://doi.org/10.7289/v5pn93h7.
  45. National Geophysical Data Center/World Data Service (NGDC/WDS). (2017b). NCEI/WDS Global Significant Earthquake Database. NOAA National Centers for Environmental Information., 2017.  https://doi.org/10.7289/V5TD9V7K.Google Scholar
  46. Okal, E. A. (2000). T waves from the 1998 Sandaun, PNG sequence: Definitive timing of the slump. In 2000 Western Pacific Geophysics Meeting. AGU.Google Scholar
  47. Okal, E. A., Plafker, G., Synolakis, C., & Borrero, J. C. (2003). Near-field survey of the 1946 Aleutian Tsunami on Unimak and Sanak Islands. Bulletin of the Seismological Society of America.  https://doi.org/10.1785/0120020198.Google Scholar
  48. Okal, E. A., & Synolakis, C. E. (2003). A Theoretical comparison of tsunamis from dislocations and landslides. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-003-2425-x.Google Scholar
  49. Okal, E. A., & Synolakis, C. E. (2004). Source discriminants for near-field tsunamis: Near-field tsunamis. Geophysical Journal International.  https://doi.org/10.1111/j.1365-246X.2004.02347.x.Google Scholar
  50. Peñalver, J., & de Olive, P. M. (1869). Nuevo diccionario de la lengua castellana: que comprende la última edición del de la Academia Española con un suplemento que contiene el diccionario de la rima y el de sinónimos por una sociedad literaria. 1225, iii, 273 p. Paris: Rosa y Bouret.Google Scholar
  51. Plattner, C., Malservisi, R., Dixon, T. H., LaFemina, P., Sella, G. F., Fletcher, J., et al. (2007). New constraints on relative motion between the Pacific Plate and Baja California microplate (Mexico) from GPS measurements. Geophysical Journal International.  https://doi.org/10.1111/j.1365-246X.2007.03494.x.Google Scholar
  52. Prior, D. B., & Coleman, J. M. (1979). Submarine landslides—geometry and nomenclature. Zeitschrift für Geomorphologie, 23(4), 415–426.Google Scholar
  53. Ramírez-Herrera, M. T., & Navarrete Pacheco, J. A. (2012). Satellite data for a rapid assessment of tsunami inundation areas after the 2011 Tohoku earthquake. Pure and Applied Geophysics, 170, 1067–1080.  https://doi.org/10.1007/s00024-012-0537-x.CrossRefGoogle Scholar
  54. Rodríguez-Lozoya, H. E., Quintanar, L., Ortega, R., Rebollar, C. J., & Yagi, Y. (2008). Rupture process of four mediumsized earthquakes that occurred in the Gulf of California. Journal of Geophysical Research, 113, B10301.  https://doi.org/10.1029/2007JB005323.CrossRefGoogle Scholar
  55. Ryan, W. B. F., Carbotte, S. M., Coplan, J., O'Hara, S., Melkonian, A., Arko, R., et al. (2009). Global Multi-Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014.  https://doi.org/10.1029/2008GC002332.CrossRefGoogle Scholar
  56. Salazar Rovirosa, A. (1980). Historia del Estado de Baja California: de 1500 a 1980 (3rd ed.). Guadalajara: Ediciones Económicas.Google Scholar
  57. Sassa, S., & Takagawa, T. (2019). Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides, 16, 195.  https://doi.org/10.1007/s10346-018-1114-x.CrossRefGoogle Scholar
  58. Satake, K., & Tanioka, Y. (2003). The July 1998 Papua New Guinea Earthquake: Mechanism and quantification of unusual tsunami generation. Pure and Applied Geophysics,.  https://doi.org/10.1007/s00024-003-2421-1.Google Scholar
  59. Sedlock, R. L. (2003). Geology and tectonics of the Baja California peninsula and adjacent areas. In S. E. Johnson, S. R. Paterson, J. M. Fletcher, G. H. Girty, D. L. Kimburgh, & A. Martín-Barajas (Eds.), Tectonic evolution of northwestern México and the southwestern USA (pp. 1–42). Boulder: Geological Society of America.Google Scholar
  60. Slevin, J. R. (1922). General Account of Expedition of the California Academy of Sciences to the Gulf of California in 1921. In Proceedings of the California Academy of Sciences, XII.Google Scholar
  61. Stock, J. M., & Hodges, K. V. (1989). Pre-Pliocene extension around the Gulf of California and the transfer of Baja California to the Pacific plate. Tectonics, 8(1), 99–115.CrossRefGoogle Scholar
  62. Sumy, D. F., Gaherty, J. B., Kim, W., Diehl, T., & Collins, J. A. (2013). The Mechanisms of Earthquakes and Faulting in the Southern Gulf of California. Bulletin of the Seismological Society of America.  https://doi.org/10.1785/0120120080.Google Scholar
  63. Suter, M. (2018). The historical seismicity of the Loreto Region, Baja California Peninsula, Mexico (1684–1878). Seismological Research Letters.  https://doi.org/10.1785/0220170204.Google Scholar
  64. Synolakis, C. E., Yalciner, A., Borrero, J. C., & Plafker, G. (2002). Modeling of the November 3, 1994 Skagway, Alaska tsunami. In Solutions to coastal disasters’02 Conference Proceedings (pp. 915–927). University of Southern California.Google Scholar
  65. Tinti, S., Armigliato, A., Manucci, A., Pagnoni, G., Zaniboni, F., Yalçiner, A. C., et al. (2006). The generating mechanisms of the August 17, 1999 İzmit bay (Turkey) tsunami: Regional (tectonic) and local (mass instabilities) causes. Marine Geology.  https://doi.org/10.1016/j.margeo.2005.09.010.Google Scholar
  66. Turner, A. K., & Schuster, R. L. (1996). Landslides: investigation and mitigation: Transportation research board special report 247 (p. 673). Washington, DC: National Research Council.Google Scholar
  67. Umhoefer, P. J., Maloney, S. J., Buchanan, B., Arrowsmith, J. R., Martinez-Gutiérrez, G., Kent, G., et al. (2014). Late Quaternary faulting history of the Carrizal and related faults, La Paz region, Baja California Sur, Mexico. Geosphere.  https://doi.org/10.1130/GES00924.1.Google Scholar
  68. Ward, S. N. (2001). Landslide tsunami. Journal of Geophysical Research: Solid Earth, 106(6), 11201–11215.CrossRefGoogle Scholar
  69. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Science.  https://doi.org/10.5194/nhess-3-391-2003.Google Scholar
  70. Yu, Y., & Xuebao, G. (2010). Research on relationship between landslides and peak ground accelerations produced by Wenchuan earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(1), 82–89.Google Scholar
  71. Zaniboni, F., Armigliato, A., Pagnoni, G., & Tinti, S. (2014). Continental margins as a source of tsunami hazard: The 1977 Gioia Tauro (Italy) landslide–tsunami investigated through numerical modeling. Marine Geology.  https://doi.org/10.1016/j.margeo.2014.08.011.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratorio de Tsunamis y Paleosismología, Instituto de GeografíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Centro de Estudios en Geografía Humana, El Colegio de Michoacán A.C.La PiedadMexico
  3. 3.Universidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Departamento de GeografíaCUCSH-Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations