Advertisement

Inter-Annual Variability and Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea over the Last 25 Years

  • Bayoumy MohamedEmail author
  • Abdallah Mohamed
  • Khaled Alam El-Din
  • Hazem Nagy
  • Mohamed Shaltout
Article

Abstract

Sea level and sea surface temperature inter-annual variability and trends in the Mediterranean Sea were investigated during the period 1993–2017. These were carried out using gridded absolute dynamic topography from satellite altimetry, tide gauge (TG) time series from 25 stations and gridded sea surface temperature (SST) from advanced very-high-resolution radiometer (AVHRR) data. The coastal TG data were used to verify the satellite derived sea level. Moreover, the contributions of atmospheric pressure and North Atlantic Oscillation (NAO) to sea level changes were also examined. The results revealed that the Mediterranean Sea exhibits inter-annual spatiotemporal coherent variability in both sea level and SST. The spatial variability in sea level is more significant over the Adriatic and Aegean Seas, most of the Levantine basin, and along the Tunisian shelf. Marked spatial variability in SST occurs over the central part of the Mediterranean Sea with maximum amplitude in the Tyrrhenian Sea. The highest temporal variability of sea level and SST was found in 2010 and 2003, respectively. The inter-annual variability of sea level and SST accounts for about 32% and 3% of the total variance of sea level and SST, respectively. An analysis of sea level anomaly reveled large negative values during the extended winter of 2011–2012, which may be attributed to the strong positive phase of NAO index. Satellite altimetry indicated a significant positive sea level trend of 2.7 ± 0.41 mm/year together with a significant warming of 0.036 ± 0.003 °C/year over the whole Mediterranean Sea for the period 1993–2017.

Keywords

Mediterranean Sea absolute dynamic topography tide gauges AVHRR spatiotemporal variability and trends 

Notes

Acknowledgements

Authors would like to acknowledge the organizations that provided the sources of the data used in this work, including CMEMS Project for the altimetry products, the Permanent Service for Mean Sea Level (PSMSL) for tide gauge data, NOAA for the SST&NAO data, and ECMWF for providing a comprehensive access to SLP data. We would like to thank Prof. Nikolaos Skliris (University of Southampton) for his constructive and helpful comments on the revised manuscript. The authors are also grateful to the anonymous reviewers, who have greatly improved the quality of this work with their advice and helpful remarks.

References

  1. Belkin, I. M. (2009). Rapid warming of large marine ecosystems. Progress in Oceanography.  https://doi.org/10.1016/j.pocean.2009.04.011.Google Scholar
  2. Bonaduce, A., Pinardi, N., Oddo, P., Spada, G., & Larnicol, G. (2016). Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Climate Dynamics, 47(9–10), 2851–2866.CrossRefGoogle Scholar
  3. Calafat, F. M., Chambers, D. P., & Tsimplis, M. N. (2012). Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. Journal of Geophysical Research: Oceans.  https://doi.org/10.1029/2012JC008285.Google Scholar
  4. Calafat, F. M., & Gomis, D. (2009). Reconstruction of Mediterranean sea level fields for the period 1945–2000. Global and Planetary Change.  https://doi.org/10.1016/j.gloplacha.2008.12.015.Google Scholar
  5. Carrère, L., & Lyard, F. (2003). Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing - Comparisons with observations. Geophysical Research Letters.  https://doi.org/10.1029/2002GL016473.Google Scholar
  6. Cazenave, A., Bonnefond, P., Mercier, F., Dominh, K., & Toumazou, V. (2002). Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Global and Planetary Change.  https://doi.org/10.1016/S0921-8181(02)00106-6.Google Scholar
  7. Cazenave, A., Cabanes, C., Dominh, K., & Mangiarotti, S. (2001). Recent sea level change in the Mediterranean sea revealed by Topex/Poseidon satellite altimetry. Geophysical Research Letters, 28(8), 1607–1610.  https://doi.org/10.1029/2000GL012628.CrossRefGoogle Scholar
  8. Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., et al. (2017). Evaluation of the global mean sea level budget between 1993 and 2014. Surveys in Geophysics, 38(1), 309–327.CrossRefGoogle Scholar
  9. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., et al. (2013). Sea level change. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1137–1216.  https://doi.org/10.1017/CB09781107415315.026.
  10. Church, J. A., Gregory, J., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M., et al. (2001). Changes in sea level. Climate change 2001: The scientific basis: Contribution of working group I to the third assessment report of the intergovernmental panel, 639–694. http://epic.awi.de/4506/1/Chu2001a.pdf%5Cnpapers://f554698c-bc30-43aa-8c0c-c8de8adb48e4/Paper/p2603.
  11. Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4–5), 585–602.CrossRefGoogle Scholar
  12. Criado-Aldeanueva, F., Vera, J. D. R., & García-Lafuente, J. (2008). Steric and mass-induced Mediterranean Sea level trends from 14 years of altimetry data. Global and Planetary Change, 60(3), 563–575.CrossRefGoogle Scholar
  13. Dasgupta, S., Laplante, B., Murray, S., & Wheeler, D. (2011). Exposure of developing countries to sea-level rise and storm surges. Climatic Change, 106(4), 567–579.CrossRefGoogle Scholar
  14. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.CrossRefGoogle Scholar
  15. Ducet, N., Le Traon, P. Y., & Reverdin, G. (2000). Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. Journal of Geophysical Research: Oceans, 105(C8), 19477–19498.CrossRefGoogle Scholar
  16. Emery, W. J., & Thomson, R. E. (1998). Data Analysis Methods in Physical Oceanography. Estuaries, 22(December), 638.  https://doi.org/10.2307/1353059.Google Scholar
  17. Fenoglio-Marc, L. (2002). Long-term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. Physics and Chemistry of the Earth, Parts A/B/C, 27(32), 1419–1431.CrossRefGoogle Scholar
  18. Gačić, M., Civitarese, G., Eusebi Borzelli, G. L., Kovačević, V., Poulain, P. M., Theocharis, A., et al. (2011). On the relationship between the decadal oscillations of the northern Ionian Sea and the salinity distributions in the eastern Mediterranean. Journal of Geophysical Research: Oceans.  https://doi.org/10.1029/2011JC007280.Google Scholar
  19. Gačić, M., Civitarese, G., Kovacevic, V., Ursella, L., Bensi, M., Menna, M., et al. (2014). Extreme winter 2012 in the Adriatic: An example of climatic effect on the BiOS rhythm. Ocean Science, 10(3), 513.CrossRefGoogle Scholar
  20. Gačić, M., Eusebi Borzelli, G. L., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters.  https://doi.org/10.1029/2010GL043216.Google Scholar
  21. Gaspar, P., & Ponte, R. M. (1997). Relation between sea level and barometric pressure determined from altimeter data and model simulations. Journal of Geophysical Research: Oceans, 102(C1), 961–971.CrossRefGoogle Scholar
  22. Gomis, D., Ruiz, S., Sotillo, M. G., Álvarez-Fanjul, E., & Terradas, J. (2008). Low frequency Mediterranean sea level variability: The contribution of atmospheric pressure and wind. Global and Planetary Change.  https://doi.org/10.1016/j.gloplacha.2008.06.005.Google Scholar
  23. Haddad, M., Hassani, H., & Taibi, H. (2013). Sea level in the Mediterranean Sea: Seasonal adjustment and trend extraction within the framework of SSA. Earth Science Informatics, 6(2), 99–111.CrossRefGoogle Scholar
  24. Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., et al. (2013). New data systems and products at the permanent service for mean sea level. Journal of Coastal Research, 288, 493–504.  https://doi.org/10.2112/JCOASTRES-D-12-00175.1.Google Scholar
  25. Landerer, F. W., & Volkov, D. L. (2013). The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophysical Research Letters, 40(3), 553–557.CrossRefGoogle Scholar
  26. Maiyza, I. A., & El-Geziry, T. M. (2012). Long term sea-level variation in the south-eastern Mediterranean Sea: A new approach of examination. Journal of Operational Oceanography, 5(2), 53–59.CrossRefGoogle Scholar
  27. Marcos, M., & Tsimplis, M. N. (2008). Coastal sea level trends in Southern Europe. Geophysical Journal International.  https://doi.org/10.1111/j.1365-246X.2008.03892.x.Google Scholar
  28. Marullo, S., Santoleri, R., Ciani, D., Le Borgne, P., Péré, S., Pinardi, N., et al. (2014). Combining model and geostationary satellite data to reconstruct hourly SST field over the Mediterranean Sea. Remote Sensing of Environment, 146, 11–23.CrossRefGoogle Scholar
  29. Mertz, F., Rosmorduc, V., Maheu, C., & Faugère, Y. (2017). Product user manual for sea level SLA products. Copernicus Marine Environment Monitoring Service. http://marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-032-051.pdf. Accessed 10 Nov 2018.
  30. Nykjaer, L. (2009). Mediterranean Sea surface warming 1985–2006. Climate Research, 39(1), 11–17.CrossRefGoogle Scholar
  31. Overland, J. E., & Preisendorfer, R. W. (1982). A significance test for principal components applied to a cyclone climatology. Monthly Weather Review, 110(1), 1–4.CrossRefGoogle Scholar
  32. Pastor, F., Valiente, J. A., & Palau, J. L. (2017). Sea surface temperature in the mediterranean: Trends and spatial patterns (1982–2016). Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1739-z.Google Scholar
  33. Peltier, W. R., Argus, D. F., & Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1), 450–487.Google Scholar
  34. Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo, P., et al. (2015). Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography, 132, 318–332.CrossRefGoogle Scholar
  35. Preisendorfer, R. W., & Mobley, C. D. (1988). Principal component analysis in meteorology and oceanography (Vol. 425). Amsterdam: Elsevier.Google Scholar
  36. Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. (2007). Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22), 5473–5496.CrossRefGoogle Scholar
  37. Rio, M. H., Pascual, A., Poulain, P. M., Menna, M., Barceló, B., & Tintoré, J. (2014). Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Science, 10(4), 73.CrossRefGoogle Scholar
  38. Rio, M. H., Poulain, P. M., Pascual, A., Mauri, E., Larnicol, G., & Santoleri, R. (2007). A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in situ measurements and a general circulation model. Journal of Marine Systems, 65(1), 484–508.CrossRefGoogle Scholar
  39. Rixen, M., Beckers, J. M., Levitus, S., Antonov, J., Boyer, T., Maillard, C., et al. (2005). The western mediterranean deep water: A proxy for climate change. Geophysical Research Letters.  https://doi.org/10.1029/2005GL022702.Google Scholar
  40. Shaltout, M., & Omstedt, A. (2014). Recent dynamic topography changes in the Mediterranean Sea analysed from satellite altimetry data. Current Development in Oceanography, 7(1/2), 1.Google Scholar
  41. Skliris, N., Sofianos, S. S., Gkanasos, A., Axaopoulos, P., Mantziafou, A., & Vervatis, V. (2011). Long-term sea surface temperature variability in the Aegean Sea. Advances in Oceanography and Limnology.  https://doi.org/10.1080/19475721.2011.601325.Google Scholar
  42. Skliris, N., Sofianos, S., Gkanasos, A., Mantziafou, A., Vervatis, V., Axaopoulos, P., et al. (2012). Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dynamics, 62(1), 13–30.CrossRefGoogle Scholar
  43. Stammer, D., Cazenave, A., Ponte, R. M., & Tamisiea, M. E. (2013). Causes for contemporary regional sea level changes. Annual Review of Marine Science, 5, 21–46.CrossRefGoogle Scholar
  44. Stanev, E. V., Le Traon, P. Y., & Peneva, E. L. (2000). Sea level variations and their dependency on meteorological and hydrological forcing: Analysis of altimeter and surface data for the Black Sea. Journal of Geophysical Research-Oceans, 105(C7), 17203–17216.CrossRefGoogle Scholar
  45. Tsimplis, M. N., Calafat, F. M., Marcos, M., Jordà, G., Gomis, D., Fenoglio-Marc, L., et al. (2013). The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. Journal of Geophysical Research: Oceans.  https://doi.org/10.1002/jgrc.20078.Google Scholar
  46. Tsimplis, M. N., & Rixen, M. (2002). Sea level in the Mediterranean Sea: the contribution of temperature and salinity changes. Geophysical Research Letters, 29(23), 51–1.  https://doi.org/10.1029/2002gl015870.CrossRefGoogle Scholar
  47. Tsimplis, M., Spada, G., Marcos, M., & Flemming, N. (2011). Multi-decadal sea level trends and land movements in the Mediterranean Sea with estimates of factors perturbing tide gauge data and cumulative uncertainties. Global and Planetary Change, 76(1–2), 63–76.CrossRefGoogle Scholar
  48. Vera, J. D. R., Criado-Aldeanueva, F., García-Lafuente, J., & Soto-Navarro, F. J. (2009). A new insight on the decreasing sea level trend over the Ionian basin in the last decades. Global and Planetary Change, 68(3), 232–235.CrossRefGoogle Scholar
  49. Vigo, I., Garcia, D., & Chao, B. F. (2005). Change of sea level trend in the Mediterranean and Black seas. Journal of Marine Research.  https://doi.org/10.1357/002224005775247607.Google Scholar
  50. Vigo, M. I., Sánchez-Reales, J. M., Trottini, M., & Chao, B. F. (2011). Mediterranean Sea level variations: Analysis of the satellite altimetric data, 1992–2008. Journal of Geodynamics, 52(3), 271–278.CrossRefGoogle Scholar
  51. von Storch, H., & Zwiers, F. W. (1999). Statistical analysis in climate research (p. 484). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Woodworth, P. L., & Player, R. (2003). The permanent service for mean sea level: An update to the 21st century. Journal of Coastal Research.  https://doi.org/10.2112/JCOASTRES-D-12-00.Google Scholar
  53. Zerbini, S., Plag, H. P., Baker, T., Becker, M., Billiris, H., Bürki, B., et al. (1996). Sea level in the Mediterranean: A first step towards separating crustal movements and absolute sea-level variations. Global and Planetary Change, 14(1–2), 1–48.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Science, Department of OceanographyUniversity of AlexandriaAlexandriaEgypt
  2. 2.Marine InstituteGalwayIreland
  3. 3.Department of Earth SciencesUniversity of GothenburgGothenburgSweden

Personalised recommendations