Pure and Applied Geophysics

, Volume 176, Issue 8, pp 3509–3531 | Cite as

An Automatic Procedure to Determine the Fundamental Site Resonance: Application to the Iranian Strong Motion Network

  • Atefe Darzi
  • Marco Pilz
  • Mohammad R. ZolfaghariEmail author
  • Donat Fäh


We present an objective technique for assessing the fundamental resonance frequency (\({\text{f}}_{0}\)) of a given site through horizontal-to-vertical (H/V) spectral ratio. H/V spectral ratios have been determined from 5%-damped spectral acceleration derived from strong-motion time histories recorded at accelerograph stations. The technique has been applied to an updated comprehensive strong ground-motion database from Iran. In this study, the resultant \({\text{f}}_{0}\) values have been also evaluated through visual inspection of average H/V response spectral ratios for each station as well as detailed inspection of vertical and horizontal spectral components of all events recorded at each station. The technique has been applied to 389 stations of the Iran Strong Motion Network (ISMN), from which \({\text{f}}_{0}\) values have been determined for 266 stations. The determined \({\text{f}}_{0}\) values have been used to estimate time-averaged shear-wave velocity in the upper 30 m (\({\text{V}}_{{{\text{S}}30}}\)), taking into account the correlation between H/V parameters and measured \({\text{V}}_{{{\text{S}}30}}\) values at recording stations. Results and corresponding model uncertainties have been compared with other related studies conducted for Japan, Central and Eastern North America as well as a global model. In comparison with other datasets, the Iranian \({\text{V}}_{{{\text{S}}30}}\) model shows the highest \({\text{V}}_{{{\text{S}}30}}\) values among all models. We use the region-specific equation developed in this study to estimate \({\text{V}}_{{{\text{S}}30}}\) values for 63 stations of ISMN where no other site characterization was available.


Fundamental resonance frequency \({\text{V}}_{{{\text{S}}30}}\) horizontal-to-vertical spectral ratio H/V Iran site effect 



The authors acknowledge the BHRC (Building and Housing Research Center, Tehran) for providing them with the raw acceleration data used in this study. This work was carried out during a research leave of the leading author at the Swiss Seismological Service (SED) at ETH Zürich. We would like to thank two anonymous reviewers whose valuable suggestions led to significant improvements of this manuscript.

Supplementary material

24_2019_2153_MOESM1_ESM.xls (106 kb)
Supplementary material 1 (XLS 105 kb)


  1. Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055.CrossRefGoogle Scholar
  2. Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(5), 1969–1993.Google Scholar
  3. Ansari, A., Noorzad, A., Zafarani, H., & Vahidifard, H. (2010). Correction of highly noisy strong motion records using a modified wavelet de-noising method. Soil Dynamic and Earthquake Engineering, 30, 1168–1181.CrossRefGoogle Scholar
  4. Ansari, A., Noorzad, A., & Zare, M. (2007). Application of wavelet multi-resolution analysis for correction of seismic acceleration records. Journal of Geophysics and Engineering, 4, 1–16.CrossRefGoogle Scholar
  5. Bard, P. Y. (1998). Microtremor measurements: A tool for site effect estimation? In Proceeding of the second international symposium on the effects of surface geology on seismic motion, Yokohama, Japan (Vol. 3, pp. 1251–1279).Google Scholar
  6. Bard, P. Y., & Bouchon, M. (1985). The two-dimensional resonance of sediment filled valleys. Bulletin of the Seismological Society of America, 75, 519–541.Google Scholar
  7. Bard P. Y. & The SESAME Project. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibration. European Commission Research General Directorate Project.Google Scholar
  8. Bazzurro, P., Cornell, C. A., & Pelli, F. (1999). Site- and soil-specific PSHA for nonlinear soil sites. In 2nd international symposium on earthquake resistant engineering structures. ERES99, 1517 June, Catania, Italy.Google Scholar
  9. Bielak, J., Xu, J., & Ghattas, O. (1999). Earthquake ground motion and structural response in alluvial valleys. Journal of Geotechnical and Geoenvironmental Engineering, 125, 413–423.CrossRefGoogle Scholar
  10. Bindi, D., Massa, M., Luzi, M. L., Ameri, G., Pacor, F., Puglia, R., et al. (2014). Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3 s using the RESORCE dataset. Bulletin of Earthquake Engineering, 12(1), 391–430.CrossRefGoogle Scholar
  11. Bommer, J. J., Akkar, S., & Kale, Ö. (2011). A model for vertical-to-horizontal response spectral ratios for Europe and the Middle East. Bulletin of the Seismological Society of America, 101, 1783–1806.CrossRefGoogle Scholar
  12. Bonilla, L. F., Steid, J. H., Lindley, G. T., Tumarkin, A. G., & Archuleta, R. J. (1997). Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, Coda and H/V methods. Bulletin of the Seismological Society of America, 87, 710–730.Google Scholar
  13. Bonnefoy-Claudet, S., Cotton, F., & Bard, P. Y. (2006). The nature of noise wavefield and its applications for site effects studies. A literature review. Earth-Science Reviews, 79, 205–227.CrossRefGoogle Scholar
  14. Bonnefoy-Claudet, S., Kohler, A., Cornou, C., Wathelet, M., & Bard, P. Y. (2008). Effects of Love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98, 288–300.CrossRefGoogle Scholar
  15. Boore, D. M. (2005). On pads and filters: Processing strong-motion data. Bulletin of the Seismological Society of America, 95, 745–750.CrossRefGoogle Scholar
  16. Boore, D. M., & Bommer, J. J. (2005). Processing of strong-motion accelerograms: Needs, options and consequences. Soil Dynamic and Earthquake Engineering, 25, 93–115.CrossRefGoogle Scholar
  17. Boore, D. M., Stephens, C. D., & Joyner, W. B. (2002). Comments on baseline correction of digital strong-motion data; Examples for the 1999 Hector Mine, California, earthquake. Bulletin of the Seismological Society of America, 92(4), 1543–1560.CrossRefGoogle Scholar
  18. Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085.CrossRefGoogle Scholar
  19. Boore, D. M., Watson-Lamprey, J., & Abrahamson, N. A. (2006). Orientation-independent measures of ground motion. Bulletin of the Seismological Society of America, 96, 1502–1511.CrossRefGoogle Scholar
  20. Bora, S. S., Scherbaum, F., Kuehn, N., & Stafford, P. J. (2016). On the relationship between Fourier and response spectra: Implications for the adjustment of empirical ground-motion prediction equations (GMPEs). Bulletin of the Seismological Society of America, 106(3), 1235–1253.CrossRefGoogle Scholar
  21. Bouchon, M. (1973). Effects of topography on surface motion. Bulletin of the Seismological Society of America, 63, 615–622.Google Scholar
  22. Bozorgnia, Y., & Campbell, K. W. (2016). Ground motion model for the vertical-to-horizontal (V/H) ratios of PGA, PGV, and response spectra. Earthquake Spectra, 32(2), 951–978.CrossRefGoogle Scholar
  23. Building Seismic Safety Council. (2009). NEHRP recommended seismic provisions for new buildings and other structures, FEMA P-750. Washington, DC: Building Seismic Safety Council. The National Institute of Building Sciences.Google Scholar
  24. Cadet, H. (2007). Utilisation combinée des méthodes basées sur le bruit de fond dans le cadre du microzonage sismique. Thèse de doctorat de l’Université Joseph Fourier, Grenoble.Google Scholar
  25. Cadet, H., Bard, P. Y., Duval, A. M., & Bertrand, E. (2012a). Site effect assessment using KiK-net data: Part2. Site amplification prediction equation based on f0 and Vsz. Bulletin of Earthquake Engineering, 10, 451–489.CrossRefGoogle Scholar
  26. Cadet, H., Bard, P. Y., & Rodriguez-Marek, A. (2010). Defining a standard rock. Propositions based on the KiK-net data. Bulletin of the Seismological Society of America, 100, 172–195.CrossRefGoogle Scholar
  27. Cadet, H., Bard, P. Y., & Rodriguez-Marek, A. (2012b). Site effect assessment using KiK-net data: Part 1. A simple correction procedure for surface/downhole spectral ratios. Bulletin of Earthquake Engineering, 10(2), 421–448.CrossRefGoogle Scholar
  28. Cauzzi, C., Faccioli, E., Vanini, M., & Bianchini, A. (2015). Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions based on a global dataset of digital acceleration records. Bulletin of Earthquake Engineering, 13(6), 1587–1612.CrossRefGoogle Scholar
  29. Chanerley, A. A., & Alexander, N. A. (2015). Wavelet domain seismic correction. In M. Beer, I. A. Kougioumtzoglou, E. Patelli, & S. Au (Eds.), Encyclopedia of earthquake engineering (pp. 3934–3959). Berlin, Heidelberg: Springer. Scholar
  30. Chatelain, J. L., Guillier, B., Cara, F., Duval, A. M., Atakan, K., Bard, P. Y., et al. (2008). Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bulletin of Earthquake Engineering, 6(1), 33–74.CrossRefGoogle Scholar
  31. Darzi, A., Zolfaghari, M. R., Cauzzi, C., & Fäh, D. (2018). An empirical ground motion model for horizontal PGV, PGA and 5%-damped elastic response spectra (0.01–10 s) in Iran. Bulletin of the Seismological Society of America. Paper ID number: BSSA-D-18-00196R3.Google Scholar
  32. Di Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012). Predominant-period site classification for response spectra prediction equations in Italy. Bulletin of the Seismological Society of America, 102, 680–695.CrossRefGoogle Scholar
  33. Donoho, D. L. (1993). Wavelet shrinkage and W.V.D.: A ten minute tour. In Y. Meyer & S. Roques (Eds.), Progress in wavelet analysis and applications (pp. 109–128). Gif-sur-Yvette: Frontieres.Google Scholar
  34. Douglas, J. (2003). What is a poor quality strong-motion record? Bulletin of Earthquake Engineering, 1, 141–156.CrossRefGoogle Scholar
  35. Edwards, B., Poggi, V., & Fäh, D. (2011). A predictive equation for the vertical-to-horizontal ratio of ground motion at rock sites based on shear-wave velocity profiles from Japan and Switzerland. Bulletin of the Seismological Society of America, 101, 2998–3019.CrossRefGoogle Scholar
  36. Fäh, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophysical Journal International, 145, 535–549.CrossRefGoogle Scholar
  37. Fäh, D., Kind, F., & Giardini, D. (2003). Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. Journal of Seismology, 7, 449–467.CrossRefGoogle Scholar
  38. Field, E., & Jacob, K. (1995). A comparison of various site-response estimation techniques, including three that are not reference-site dependent. Bulletin of the Seismological Society of America, 85, 1127–1143.Google Scholar
  39. Gallipoli, M. R., & Mucciarelli, M. (2009). Comparison of Site Classification from VS30, VS10, and HVSR in Italy. Bulletin of the Seismological Society of America, 99(1), 340–351.CrossRefGoogle Scholar
  40. Ghasemi, H., Zare, M., Fukushima, Y., & Sinaeian, F. (2009). Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian Strong Motion Network (ISMN). Soil Dynamic and Earthquake Engineering, 29, 121–132.CrossRefGoogle Scholar
  41. Ghofrani, H., & Atkinson, G. M. (2014). Site condition evaluation using horizontal-to-vertical response spectral ratios of earthquakes in the NGA-West 2 and Japanese databases. Soil Dynamic and Earthquake Engineering, 67, 30–43.CrossRefGoogle Scholar
  42. Ghofrani, H., Atkinson, G. M., & Goda, K. (2013). Implications of the 2011 M 9.0 Tohoku Japan earthquake for the treatment of site effects in large earthquakes. Bulletin of Earthquake Engineering, 11, 171–203.CrossRefGoogle Scholar
  43. Ghorbani, M. (2013). Chapter 2: A summary of geology of Iran. In M. Ghorbani (Ed.), The economic geology of Iran: Mineral deposits and natural resources (Vol. XVI). Springer Geology. Dordrecht: Springer.
  44. Haghshenas, E., Bard, P. Y., Theodulidis, N., & SESAME WP04 Team. (2008). Empirical evaluation of microtremor H/V spectral ratio. Bulletin of the Seismological Society of America, 6, 74–108.Google Scholar
  45. Hassani, B., & Atkinson, G. M. (2016). Applicability of the site fundamental frequency as a VS30 proxy for central and eastern North America. Bulletin of the Seismological Society of America, 106, 653–664.CrossRefGoogle Scholar
  46. Horike, M., Zhao, B., & Kawase, H. (2001). Comparison of site response characteristics inferred from microtremor and earthquake shear waves. Bulletin of the Seismological Society of America, 91(6), 1526–1536.CrossRefGoogle Scholar
  47. International Federation of Red Cross and Red Crescent Societies. (2004).
  48. Kale, Ö., Akkar, S., Ansari, A., & Hamzehloo, H. (2015). A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV, and 5% damped response spectrum: Investigation of possible regional effects. Bulletin of the Seismological Society of America, 105(2A), 963–980.CrossRefGoogle Scholar
  49. Kawase, H., Sánchez-Sesma, F. J., & Matsushima, S. (2011). The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves. Bulletin of the Seismological Society of America, 101, 2001–2014.CrossRefGoogle Scholar
  50. Komak Panah, A., Hafezi Moghaddas, N., Ghayamghamian, M. R., Motosaka, M., et al. (2002). Site effect classification in East-Central of Iran. Journal of Seismology and Earthquake Engineering, 4, 37–46.Google Scholar
  51. Kotha, S. R., Bindi, D., & Cotton, F. (2016). Partially non-ergodic region specific GMPE for Europe and Middle-East. Bulletin of Earthquake Engineering, 14(4), 1245–1263.CrossRefGoogle Scholar
  52. Kottke, A. R., Hashash, Y., Stewart, J. P., Moss, C. J., & Nikolaou, S., et al. (2012). Development of geologic site classes for seismic site amplification for central and eastern North America. In 15th world conference on earthquake engineering, Lisbon, Portugal (p. 4557).Google Scholar
  53. Lermo, J., & Chavez-Garcıa, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83, 1574–1594.Google Scholar
  54. Lermo, J., & Chavez-Garcıa, F. J. (1994). Are microtremors useful in site response evaluation? Bulletin of the Seismological Society of America, 84(5), 1350–1364.Google Scholar
  55. Motamed, R., Ghalandarzadeh, A., Towhata, I., & Tabatabaei, S. H. (2007). Seismic microzonation and damage assessment of Bam City, Southeastern Iran. Journal of Earthquake Engineering, 11(1), 93–115.CrossRefGoogle Scholar
  56. Mucciarelli, M., & Gallipoli, M. R. (2006). Comparison between Vs30 and other estimates of site amplification in Italy. In Proceedings 1st European conference on earthquake engineering and seismology, Cd-Rom edition (p. 270).Google Scholar
  57. Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, 30, 25–33.Google Scholar
  58. Nogoshi, M., & Igarashi, T. (1971). On the amplitude characteristics of microtremor (part 2). Journal of Seismological Society of Japan, 24, 26–40.Google Scholar
  59. Paolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering and Structural Dynamic, 31, 1831–1853.CrossRefGoogle Scholar
  60. Park, D., & Hashash, Y. M. A. (2004). Probabilistic seismic hazard analysis with non-linear site effects in the Mississippi embayment. In 13th World conference on earthquake engineering, Vancouver.Google Scholar
  61. Parolai, S., Richwalski, S., Milkereit, C., & Fäh, D. (2006). S-wave velocity profiles for earthquake engineering purposes for the Cologne area (Germany). Bulletin of Earthquake Engineering, 4, 65–94.CrossRefGoogle Scholar
  62. Pilz, M., Parolai, S., Leyton, F., Campos, J., & Zschau, J. (2009). A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban area of Santiago de Chile. Geophysical Journal International, 178, 713–728.CrossRefGoogle Scholar
  63. Pitilakis, K., Gazepis, C., & Anastasiadis, A. (2006). Design response spectra and soil classification for seismic code provisions. General Report. Athens Workshop, ETC12, Geotechnical Evaluation.Google Scholar
  64. Rayhani, M. H. T., El Naggar, M. H., & Tabatabaei, S. H. (2007). Nonlinear analysis of local site effects on seismic ground response in the Bam Earthquake. Geotechnical and Geological Engineering, 26, 91–100.CrossRefGoogle Scholar
  65. Rodriguez-Marek, A., Bray, J. D., & Abrahamson, N. A. (2001). An empirical geotechnical seismic site response procedure. Earthquake Spectra, 17, 65–87.CrossRefGoogle Scholar
  66. Şafak, E. (2001). Local site effects and dynamic soil behavior. Soil Dynamic and Earthquake Engineering, 21(5), 453–458.CrossRefGoogle Scholar
  67. Stafford, P. J., Rodriguez-Marek, A., Edwards, B., Kruiver, P. P., & Bommer, J. B. (2017). Scenario dependence of linear site-effect factors for short-period response spectral ordinates. Bulletin of the Seismological Society of America, 107(6), 2859–2872.CrossRefGoogle Scholar
  68. Standard 2800 (2003). Iranian code of practice for seismic resistant design of buildings. Tehran: Road, Housing and Urban Development Research Center Publication.Google Scholar
  69. Steidl, J. H. (2000). Site response in southern California for probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 90(6B), S149–S169.CrossRefGoogle Scholar
  70. Stewart, J. P., Liu, A. H., & Choi, Y. (2003). Amplification factors for spectral acceleration in tectonically active regions. Bulletin of the Seismological Society of America, 93(1), 332–352.CrossRefGoogle Scholar
  71. Thompson, E. M., & Silva, W. J. (2013). Development of a hybrid slope-geology method of estimating VS30 for Central and Eastern North America. Report to USGS.Google Scholar
  72. Wair, B. R., DeJong, J. T., & Shantz, T. (2012). Guidelines for Estimation of Shear Wave Velocity Profiles. PEER Report 2012/08. Pacific Earthquake Engineering Research Center. Google Scholar
  73. Wald, D. J., & Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97, 1379–1395.CrossRefGoogle Scholar
  74. Woolery, E., & Street, R. (2002). 3D near-surface soil response from H/V ambient noise ratios. Soil Dynamic and Earthquake Engineering, 22, 865–876.CrossRefGoogle Scholar
  75. Zare, M., Bard, P. Y., & Ghafory-Ashtiany, M. (1999). Site characterizations for the Iranian strong motion network. Soil Dynamic and Earthquake Engineering, 18, 101–121.CrossRefGoogle Scholar
  76. Zhao, J. X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P. G., & Asano, A. (2006). An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America, 96, 914–925.CrossRefGoogle Scholar
  77. Zolfaghari, M. R., & Darzi, A. (2019). Ground-motion models for the vertical-to-horizontal spectral ratios of PGA, PGV and 5%-damped response spectral accelerations for Iran. Journal of Seismology. Manuscript ID: JOSE-D-18-00068R2 (Under revision).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Atefe Darzi
    • 1
    • 2
  • Marco Pilz
    • 3
  • Mohammad R. Zolfaghari
    • 1
    Email author
  • Donat Fäh
    • 2
  1. 1.Civil Engineering DepartmentK. N. Toosi University of TechnologyTehranIran
  2. 2.Swiss Seismological Service (SED) at ETH ZürichZurichSwitzerland
  3. 3.Seismic Hazard and Risk Dynamics DepartmentGFZ German Research Centre for Geosciences, Helmholtz Centre PotsdamPotsdamGermany

Personalised recommendations