Pure and Applied Geophysics

, Volume 176, Issue 8, pp 3425–3438 | Cite as

Prediction of the Maximum Expected Earthquake Magnitude in Iran: From a Catalog with Varying Magnitude of Completeness and Uncertain Magnitudes

  • Mona SalamatEmail author
  • Gert Zöller
  • Morteza Amini


This paper concerns the problem of predicting the maximum expected earthquake magnitude \(\mu\) in a future time interval \(T_{\text{f}}\) given a catalog covering a time period \(T\) in the past. Different studies show the divergence of the confidence interval of the maximum possible earthquake magnitude \(m_{ \hbox{max} }\) for high levels of confidence (Salamat et al. 2017). Therefore, \(m_{ \hbox{max} }\) should be better replaced by \(\mu\) (Holschneider et al. 2011). In a previous study (Salamat et al. 2018), \(\mu\) is estimated for an instrumental earthquake catalog of Iran from 1900 onwards with a constant level of completeness \(\left( {m_{0} = 5.5} \right)\). In the current study, the Bayesian methodology developed by Zöller et al. (2014, 2015) is applied for the purpose of predicting \(\mu\) based on the catalog consisting of both historical and instrumental parts. The catalog is first subdivided into six subcatalogs corresponding to six seismotectonic zones, and each of those zone catalogs is subsequently subdivided according to changes in completeness level and magnitude uncertainty. For this, broad and small error distributions are considered for historical and instrumental earthquakes, respectively. We assume that earthquakes follow a Poisson process in time and Gutenberg–Richter law in the magnitude domain with a priori unknown \(a\) and b values which are first estimated by Bayes’ theorem and subsequently used to estimate \(\mu\). Imposing different values of \(m_{ \hbox{max} }\) for different seismotectonic zones namely Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh and Makran, the results show considerable probabilities for the occurrence of earthquakes with \(M_{w} \ge 7.5\) in short \(T_{\text{f}}\) , whereas for long \(T_{\text{f}}\), \(\mu\) is almost equal to \(m_{ \hbox{max} }\).


Maximum expected earthquake magnitude completeness levels magnitude errors Bayesian method Iran 



We thank editor Adrien Oth and three anonymous reviewers for their useful comments. The paper greatly benefited from constructive comments of an anonymous reviewer who entirely helped us improve the manuscript. GZ acknowledges support from the Deutsche Forschungsgemeinschaft (SFB 1294). MS is grateful to Mehdi Zare for a valuable discussion. We also use the software GMT (Wessel and Smith 1991) to produce Fig. 1.

Supplementary material

24_2019_2141_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)


  1. Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. Cambridge: Cambridge University Press, Cambridge.Google Scholar
  2. Berberian, M. (1994). Natural hazards and the first earthquake catalogue of Iran. In International Institute of Earthquake Engineers and Seismology (Vol. 1).Google Scholar
  3. Burkhard, M., & Grünthal, G. (2009). Seismic source zone characterization for the seismic hazard assessment project Peagasos by the epert group 2. Swiss Journal of Geoscience, 102, 149–188.CrossRefGoogle Scholar
  4. Gardner, J., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.Google Scholar
  5. Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration (second paper). Bulletin of the Seismological Society of America, 46(2), 105–145.Google Scholar
  6. Heidarzadeh, M., Pirooz, M., Zaker, N., Yalciner, A., Mokhtari, M., & Esmaeily, A. (2008). Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering Journal, 35, 774–786.CrossRefGoogle Scholar
  7. Hessami, K., & Jamali, F. (2006). Explanatory notes to the map of major active faults of Iran. Journal of Seismology and Earthquake Engineering, 8(1), 1–11.Google Scholar
  8. Holschneider, M., Zöller, G., & Hainzl, S. (2011). Estimation of the maximum possible magnitude in the framework of a doubly truncated Gutenberg–Richter model. Bulletin of the Seismological Society of America, 101(4), 1649–1659.CrossRefGoogle Scholar
  9. IGUT. (2015). The Institute of the Iranian Geophysics, University of Tehran, Iran. Accessed 15 Dec 2015.
  10. IIEES. (2015). International Institute of Earthquake Engineering and Seismology, Tehran, Iran. Accessed 15 Dec 2015.
  11. ISC. (2015). International Seismological Center. EHB bulletin, Thatcham, UK. Accessed 15 Dec 2015.
  12. Jackson, J., Priestley, K., Allen, M., & Beberian, M. (2002). Active tectonics of the south Caspian basin. Geophysical Journal International, 148, 214–245.Google Scholar
  13. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.CrossRefGoogle Scholar
  14. Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A. (2013). Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology, 17(3), 897–911.CrossRefGoogle Scholar
  15. Kasahara, K. (1981). Earthquake mechanics. Cambridge: Cambridge University Press.Google Scholar
  16. Kondorskaya, N. V., & Shebalin, N. V. (1977). New catalog of strong earthquakes in the U.S.S.R. area. Moscow: Nauka. (in Russian).Google Scholar
  17. Koppa, C., Fruehn, J., Flueh, E. R., Reichert, C., Kukowski, N., Bialas, J., et al. (2000). Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329, 171–191.CrossRefGoogle Scholar
  18. Lee, W., Kanamori, H., Jennings, P., & Kisslinger, C. (2002). Earthquake and engineering seismology (pp. 269–281). New York: Part A Academic.CrossRefGoogle Scholar
  19. Lombardi, A. M., & Marzocchi, W. (2007). Evidence of clustering and nonstationarity in the time distribution of large worldwide earthquakes uncertainty. Journal of Geophysical Research, 112, 1271–1282.CrossRefGoogle Scholar
  20. Mirzaei, N., Mengtan, G., & Yuntai, C. (1998). Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces. Journal of Earthquake Prediction Research, 7, 465–495.Google Scholar
  21. NEIC. (2015). National Earthquake Information Center Bulletin. US Geological Survey. CO, USA. Accessed 15 Dec 2015.
  22. Nissen, E., Tatar, M., Jackson, J. A., & Allen, M. B. (2011). New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophysical Journal International, 186(3), 928–944.CrossRefGoogle Scholar
  23. Pisarenko, V. F. (1991). Statistical evaluation of maximum possible earthquakes. Izvestiya Physics of the Solid Earth, 27, 757–763.Google Scholar
  24. Pisarenko, V. F., & Lysenko, V. B. (1997). Probability distribution of the maximal earthquake in a given time interval. Izvestiya Physics of the Solid Earth, 33(6), 438–446.Google Scholar
  25. Pisarenko, V., Lyubushin, A., Lysenko, V., & Golubeva, T. (1996). Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters. Bulletin of the Seismological Society of America, 86(3), 691–700.Google Scholar
  26. Pisarenko, V. F., & Rodkin, M. V. (2009). The instability of the Mmax parameter and an alternative to its using. Izvestiya Physics of the Solid EARTH, 45(12), 1081.CrossRefGoogle Scholar
  27. Pisarenko, V. F., Sornette, A., Sornette, D., & Rodkin, M. V. (2008). New approach to the characterization of Mmax and of the tail of the distribution of earthquake magnitudes. Pure and Applied Geophysics, 165, 847–888.CrossRefGoogle Scholar
  28. Salamat, M., Zare, M., Holschneider, M., & Zöller, G. (2017). Calculation of confidence intervals for the maximum magnitude of earthquakes in different seismotectonic zones of Iran. Pure and Applied Geophysics, 174(3), 763–777.CrossRefGoogle Scholar
  29. Salamat, M., Zöller, G., Zare, M., & Amini, M. (2018). The maximum expected earthquake magnitudes in different future time intervals of six seismotectonic zones of Iran and its surroundings. Journal of Seismology, 22(6), 1485–1498.CrossRefGoogle Scholar
  30. Shahvar, M. P., Zare, M., & Castellaro, S. (2013). A unified seismic catalog for the Iranian plateau (1900–2011). Seismological Research Letter, 84(2), 233–249.CrossRefGoogle Scholar
  31. Talebian, M., & Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3), 506–526.CrossRefGoogle Scholar
  32. Van Stiphout, T., Zhung, J., & Marsan, D. (2012). Seismicity declustering. In Community online resource for statistical seismicity analysis.Google Scholar
  33. Vernant, P., Nilforoushan, F., Chéry, J., Bayer, R., Djamour, Y., Masson, F., et al. (2004). Deciphering oblique shortening of central Alborz in Iran using geodetic data. Earth and Planetary Science Letters, 223(1–2), 177–185.CrossRefGoogle Scholar
  34. Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. EOS, 72, 441.CrossRefGoogle Scholar
  35. Zöller, G., Hainzl, S., & Holschneider, M. (2010). Recurrence of large earthquakes: Bayesian inference from catalogs in the presence of magnitude uncertainties. Pure and Applied Geophysics, 167, 845–853.CrossRefGoogle Scholar
  36. Zöller, G., Holschneider, M., & Hainzl, S. (2013). The maximum earthquake magnitude in a time horizon: Theory and case studies. Bulletin of the Seismological Society of America, 103(2A), 860–875.CrossRefGoogle Scholar
  37. Zöller, G., Holschneider, M., Hainzl, S., & Zhuang, J. (2014). The largest expected earthquake magnitudes in Japan: The statistical perspective. Bulletin of the Seismological Society of America, 104(2), 769–779.CrossRefGoogle Scholar
  38. Zöller, G., Ullah, S., Bindi, D., Palorai, S., & Mikhailova, N. (2015). The largest expected earthquake magnitude in Central Asia: Statistical inference from an earthquake catalog with uncertain magnitude. Geological Society, London, Social Publication, 432, 432–433.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.International Institute of Earthquake Engineering and Seismology (IIEES)TehranIran
  2. 2.Institute of MathematicsUniversity of PotsdamPotsdamGermany
  3. 3.Department of Statistics, School of Mathematics, Statistics and Computer ScienceUniversity of TehranTehranIran

Personalised recommendations