Numerical Modeling of the June 17, 2017 Landslide and Tsunami Events in Karrat Fjord, West Greenland

  • Alexandre ParisEmail author
  • Emile A. Okal
  • Cyrielle Guérin
  • Philippe Heinrich
  • François Schindelé
  • Hélène Hébert


On June 17 2017, the western coast of Greenland was the site of a tsunami which flooded several villages, killing 4 people and destroying 11 houses in the village of Nuugaatsiaq. This tsunami was triggered by a subaerial landslide which occurred in a fjord 32 km ENE of Nuugaatsiaq. This paper presents the numerical modeling of this landslide of \(\sim\) 50 million \(\hbox {m}^{3}\) and of the tsunami propagation from its source to Nuugaatsiaq. The landslide is considered as a granular flow under gravity forces and the water waves generated are related to the displacement of the sea bottom. The results obtained are similar in amplitude to our inferences from videos, i.e., three water waves between 1 and 1.5 m arriving at Nuugaatsiaq with a period of roughly 3 min, and are also in general agreement with the amplitude (1 m) resulting from deconvolution of oscillations recorded on a horizontal seismogram operating at Nuugaatsiaq (NUUG). According to the field survey performed by Fritz et al. (EGU General Assembly Conference Abstracts, Vol. 20 of EGU General Assembly Conference Abstracts, p 18345, 2018a) on July 2017, a second mass next to the landslide is threatening Karrat Fjord. A sensitivity study is realized on its volume, with 2, 7, 14 and 38 million \(\hbox {m}^{3}\) reaching the sea. The shape of the water waves is found to be independent of volume, and linearity is observed between the volume and the water wave heights. Finally, the orientation of the slide does not seem to influence either the period or the shape of the generated water waves.


Tsunami landslide Greenland simulation 



We thank John Clinton, Director of Seismic Networks, ETH, Zürich, for access to the NUUG seismograms, and for critical metadata concerning their misorientation. Some figures were produced using the GMT software (Wessel and Smith 1991). This work was supported by the LRC Yves Rocard (Laboratoire de Recherche Conventionné CEA-ENS). The paper was improved by the constructive comments of David Tappin and a second, anonymous, reviewer.


  1. Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research Oceans, 117(5), 1–26.Google Scholar
  2. Ambraseys, N., & Bilham, R. (2012). The Sarez–Pamir earthquake and landslide of 18 February 1911. Seismological Research Letters, 83(2), 294–314.Google Scholar
  3. Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P. C., Savoye, B., & Bourillet, J. F. (2000). Numerical modelling of a landslide-generated Tsunami: The 1979 nice event. Pure and Applied Geophysics, 157(10), 1707–1727.Google Scholar
  4. Chao, W.-A., Wu, T.-R., Ma, K.-F., Kuo, Y.-T., Wu, Y.-M., Zhao, L., et al. (2018). The large greenland landslide of 2017: Was a Tsunami warning possible? Seismological Research Letters, 89(4), 1335–1344.Google Scholar
  5. Clinton, J., Larsen, T., Dahl-Jensen, T., Voss, P., & Nettles, M. (2017). Special event: Nuugaatsiaq Greenland landslide and tsunami. Incorporated Research Institutions for Seismology Washington DC .
  6. Dahl-Jensen, T., Larsen, L. M., Pedersen, S. A. S., Pedersen, J., Jepsen, H. F., Pedersen, G., et al. (2004). Landslide and Tsunami 21 November 2000 in Paatuut, West Greenland. Natural Hazards, 31(1), 277–287.Google Scholar
  7. Ekström, G., & Stark, C. P. (2013). Simple scaling of catastrophic landslide dynamics. Science, 339(6126), 1416–1419.Google Scholar
  8. Fine, I. V., Rabinovich, A. B., Thomson, R. E., & Kulikov, E. A. (2003). Numerical modeling of Tsunami generation by submarine and subaerial landslides (pp. 69–88). Dordrecht: Springer.Google Scholar
  9. Fritz, H. M. (2002). Initial phase of landslide generated impulse waves. PhD Thesis, ETH Zurich.Google Scholar
  10. Fritz, H. M., Giachetti, T., Anderson, S., & Gauthier, D. (2018a). Field survey of the 17 June 2017 landslide generated Tsunami in Karrat Fjord, Greenland. In EGU General Assembly Conference Abstracts, Vol. 20 of EGU General Assembly Conference Abstracts, p. 18345.Google Scholar
  11. Fritz, H. M., Synolakis, C., Kalligeris, N., Skanavis, V., Santoso, F., Rizal, M., et al. (2018b). Field survey of the 28 September 2018 Sulawesi tsunami. Eos Transactions American Geophysical Union, 99, 53. (NH22B-04, [abstract]).Google Scholar
  12. Gauthier, D., Anderson, S. A., Fritz, H. M., & Giachetti, T. (2018). Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: Initial 3D observations. Landslides, 15(2), 327–332.Google Scholar
  13. Geist, E. L. (2000). Origin of the 17 July 1998 Papua New Guinea Tsunami: Earthquake or landslide. Seismological Research Letters, 71(3), 344–351.Google Scholar
  14. Gilbert, J. (1980). An introduction to low-frequency seismology. In A. Dziewopnski & E. Boschi (Eds.), Proceedings of the International School of Physics “Enrico Fermi’ (Vol. 78, pp. 41–81). Amsterdam: North Holland.Google Scholar
  15. Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: Does it really matter? Natural Hazards and Earth System Sciences, 13, 1507–1526.Google Scholar
  16. Guérin, C. (2017). Effect of the DTM quality on the bundle block adjustment and orthorectification process without GCP: Example on a steep area. In Proceedings of 2017 IEEE international geoscience remote sensing symposium (IGARSS). IEEE, pp. 1067–1070.Google Scholar
  17. Guérin, C., Binet, R., & Pierrot-Deseilligny, M. (2014). Automatic detection of elevation changes by differential DSM analysis: Application to urban areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4020–4037.Google Scholar
  18. Haeberli, W., & Gruber, S. (2009). Global warming and mountain permafrost (pp. 205–218). Berlin: Springer.Google Scholar
  19. Hanson, J. A., & Bowman, J. R. (2005). Dispersive and reflected tsunami signals from the 2004 Indian Ocean tsunami observed on hydrophones and seismic stations. Geophysical Research Letters, 32, 17.Google Scholar
  20. Hébert, H., Piatanesi, A., Heinrich, P., & Schindelé, F. (2002). Numerical modeling of the September 13, 1999 landslide and tsunami on Fatu Hiva Island (French Polynesia). Geophysical Research Letters, 29(10), 10–13.Google Scholar
  21. Heinrich, P., Boudon, G., Komorowski, J. C., Sparks, R. S. J., Herd, R., & Voight, B. (2001b). Numerical simulation of the December 1997 Debris Avalanche in Montserrat, Lesser Antilles. Geophysical Research Letters, 28(13), 2529–2532.Google Scholar
  22. Heinrich, P., & Piatanesi, A. (2000). Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea. Geophysical Research Letters, 27(19), 3037–3040.Google Scholar
  23. Heinrich, P., Piatanesi, A., & Hébert, H. (2001a). Numerical modelling of tsunami generation and propagation from submarine slumps: The 1998 Papua New Guinea event. Geophysical Journal International, 145(1), 97–111.Google Scholar
  24. Hermanns, R. L., Blikra, L. H., Naumann, M., Nilsen, B., Panthi, K. K., Stromeyer, D., et al. (2006). Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Engineering Geology, 83(1–3), 94–108.Google Scholar
  25. Higman, B., Shugar, D. H., Stark, C. P., Ekström, G., Koppes, M. N., Lynett, P., et al. (2018). The 2015 landslide and tsunami in Taan Fiord, Alaska. Scientific Reports, 8(1), 12993.Google Scholar
  26. Huggel, C., Clague, J. J., & Korup, O. (2012). Is climate change responsible for changing landslide activity in high mountains? Earth Surface Processes and Landforms, 37(1), 77–91.Google Scholar
  27. ICAO. (1955). International Civil Aviation (ICAO) Meteorological Stations in Greenland. ICAO Bulletin, 10(7), 7–11.Google Scholar
  28. Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., et al. (2012). The international bathymetric chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters, 39, L12609.Google Scholar
  29. La Rocca, M., Galluzzo, D., Saccorotti, G., Tinti, S., Cimini, G. B., & Del Pezzo, E. (2004). Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy. Bulletin of the Seismological Society of America, 94(5), 1850–1867.Google Scholar
  30. Labbé, M., Donnadieu, C., Daubord, C., & Hébert, H. (2012). Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): Comparison with coastal data. Journal of Geophysical Research Earth Surface, 117, F1.Google Scholar
  31. Le Friant, A., Heinrich, P., Deplus, C., & Boudon, G. (2003). Numerical simulation of the last flank-collapse event of Montagne Pelée, Martinique, Lesser Antilles. Geophysical Research Letters, 30, 2.Google Scholar
  32. Løvholt, F., Pedersen, G., & Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research Oceans, 113(9), 1–21.Google Scholar
  33. McNamara, D., Ringler, A., Hutt, C., & Gee, L. (2011). Seismically observed seiching in the Panama Canal. Journal of Geophysical Research Solid Earth, 116, B4.Google Scholar
  34. Mergili, M., Fischer, J.-T., Krenn, J., & Pudasaini, S. P. (2017). r.avaflow v1, and advances open-source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, 10(2), 553–569.Google Scholar
  35. Miller, D. J. (1960). Giant waves in Lituya Bay, Alaska. US Geological Survey Professional Paper, 354-C.Google Scholar
  36. Naranjo, J. A., Arenas, M., Clavero, J., & Muñoz, O. (2009). Mass movement-induced tsunamis: Main effects during the Patagonian Fjordland seismic crisis in Aisén (\(45^{\circ }\) 25’S), Chile. Andean Geology, 36, 1.Google Scholar
  37. NOAA. (2018). National Geophysical Data Center/ World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information.
  38. Okal, E. A. (2003). \(T\) waves from the 1998 Papua New Guinea earthquake and its aftershocks: Timing the tsunamigenic slump. Pure and Applied Geophysics, 160, 1843–1863.Google Scholar
  39. Okal, E. A. (2007). Seismic records of the 2004 Sumatra and other tsunamis: A quantitative study. Pure and Applied Geophysics, 164, 325–353.Google Scholar
  40. Okal, E. A., Fryer, G. J., Borrero, J. C., & Ruscher, C. (2002). The landslide and local tsunami of 13 September 1999 on Fatu Hiva (Marquesas islands; French Polynesia). Bulletin de la Société géologique de France, 173(4), 359–367.Google Scholar
  41. Okal, E. A., & Synolakis, C. E. (2001). Comment on “Origin of the 17 July 1998 Papua New Guinea tsunami: Earthquake or landslide?” by EL Geist. Seismological Research Letters, 72(3), 363–366.Google Scholar
  42. Okal, E. A., & Synolakis, C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides. Pure and Applied Geophysics, 160(10–11), 2177–2188.Google Scholar
  43. Pedersen, S. A. S., Larsen, L. M., Dahl-jensen, T., Jepsen, H. F., Krarup, G., Nielsen, T., et al. (2002). Tsunami-generating rock fall and landslide on the south coast of Nuussuaq, central West Greenland. Geology of Greenland Survey Bulletin, 191, 73–83.Google Scholar
  44. Pierrot-Deseilligny, M., Paparoditis, N. (2006). A multiresolution and optimization-based image matching approach: An application to surface reconstruction from SPOT5-HRS stereo imagery. In IAPRS vol XXXVI-1/W41 in ISPRS Workshop On Topographic Mapping From Space (With Special Emphasis on Small Satellites, Ankara, Turquie).Google Scholar
  45. Pouliquen, O. (1999). Scaling laws in granular flows down rough inclined planes. Physics of Fluids, 11(3), 542–548.Google Scholar
  46. Poupardin, A., Heinrich, P., Frère, A., Imbert, D., Hébert, H., & Flouzat, M. (2017). The 1979 submarine landslide-generated Tsunami in Mururoa, French Polynesia. Pure and Applied Geophysics, 174, 3293–3311.Google Scholar
  47. Rodriguez, M., Chamot-Rooke, N., Hébert, H., Fournier, M., & Huchon, P. (2013). Owen Ridge deep-water submarine landslides: Implications for tsunami hazard along the Oman coast. Natural Hazards and Earth System Science, 13, 417–424.Google Scholar
  48. Saito, M. (1967). Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous earth. Journal of Geophysical Research, 72(14), 3689–3699.Google Scholar
  49. Satake, K., Smith, J., & Shinozaki, K. (2002). Three-dimensional reconstruction and tsunami model of the Nuuanu and Wailau giant landslides (pp. 333–346). American Geophysical Union Geophysical Monograph Series: Hawaii.Google Scholar
  50. Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.Google Scholar
  51. Savage, S. B., & Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica, 86(1), 201–223.Google Scholar
  52. Scharroo, R., Smith, W., Titov, V., & Arcas, D. (2005). Observing the Indian Ocean tsunami with satellite altimetry. Geophysical Research Abstracts, 7, 230.Google Scholar
  53. Scheidegger, A. E. (1973). On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics and Rock Engineering, 5(4), 231–236.Google Scholar
  54. Schuster, R. L., & Alford, D. (2004). Usoi landslide dam and lake sarez, Pamir mountains, Tajikistan. Environmental and Engineering Geoscience, 10(2), 151–168.Google Scholar
  55. Sepúlveda, S. A., & Serey, A. (2009). Tsunamigenic, earthquake-triggered rock slope failures during the April 21, 2007 Aisén earthquake, southern Chile (45.5 S). Andean Geology, 36, 1.Google Scholar
  56. Shuto, N. (1991). Numerical simulation of tsunamis—its present and near future. Natural Hazards, 4, 171–191.Google Scholar
  57. Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., Sweet, S., & Tappin, D. R. (2002). The slump origin of the 1998 Papua New Guinea tsunami. In Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol. 458, The Royal Society, pp. 763–789.Google Scholar
  58. Thomson, R. E., Rabinovich, A. B., Kulikov, E. A., Fine, I. V., & Bornhold, B. D. (2001). On Numerical simulation of the landslide-generated Tsunami of November 3, 1994 in Skagway Harbor (pp. 243–282). Dordrecht: Springer.Google Scholar
  59. Tinti, S., Pagnoni, G., & Zaniboni, F. (2006). The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations. Bulletin of Volcanology, 68(5), 462–479.Google Scholar
  60. Viroulet, S., Cébron, D., Kimmoun, O., & Kharif, C. (2013). Shallow water waves generated by subaerial solid landslides. Geophysical Journal International, 193(2), 747–762.Google Scholar
  61. Voight, B. (1981). The 1980 eruptions of Mount St. Helens, Washington. Time scale for the first moments of the May 18 eruption. US Geological Survey Professional Paper, 1250, 69–86.Google Scholar
  62. Wang, J., Ward, S. N., & Xiao, L. (2015). Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chehalis Lake, Canada. Geophysical Journal International, 201(1), 372–376.Google Scholar
  63. Ward, S. N. (1980). Relationships of tsunami generation and an earthquake source. Journal of Physics of the Earth, 28(5), 441–474.Google Scholar
  64. Ward, S. N., & Day, S. (2011). The 1963 landslide and flood at Vajont Reservoir Italy. A tsunami ball simulation. Italian Journal of Geosciences, 130(1), 16–26.Google Scholar
  65. Weiss, R., Fritz, H. M., & Wünnemann, K. (2009). Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophysical Research Letters, 36, 9.Google Scholar
  66. Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos Transactions American Geophysical Union, 72(41), 441–446.Google Scholar
  67. Yuan, X., Kind, R., & Pedersen, H. A. (2005). Seismic monitoring of the Indian Ocean tsunami. Geophysical Research Letters, 32, 15.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire de Géologie, Ecole Normale Supérieure, CNRS UMR8538PSL Research UniversityParisFrance
  2. 2.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA
  3. 3.CEA, DAM, DIFArpajon CedexFrance

Personalised recommendations