Advertisement

Probabilistic Seismic Hazard Assessment of Mangalore and Its Adjoining Regions, A Part of Indian Peninsular: An Intraplate Region

  • C. ShreyasviEmail author
  • Katta Venkataramana
  • Sumer Chopra
  • Madan Mohan Rout
Article
  • 42 Downloads

Abstract

The Southwestern part of India investigated in the present study mainly comprises of states such as Goa, north Kerala and a major portion of Karnataka. A comprehensive regional seismic catalog has been compiled spanning over 190 years apart from a few prehistoric events from the early 16th century. The classical Cornel–McGuire approach has been incorporated in the estimation of seismic hazard. The seismic sources are modeled as area sources and the entire study region is divided into four seismogenic source zones. The uncertainties involved in the formulation of the seismic source model and ground motion prediction model has been discussed in detail. Further, the procedure for selecting appropriate GMPEs involves the evaluation of multidimensional (M, R, T) ground motion trends and performance against observed macroseismic data. The epistemic uncertainty in the estimation of seismicity parameters and ground motion prediction equations (GMPEs) has been addressed using logic tree computation. The results of the hazard analysis demonstrate that the existing seismic code underestimates the seismic potential of seismic zone II (BIS 1893) areas. The de-aggregation of the predicted seismic hazard revealed earthquakes of magnitude range (Mw) 4–6 occurring within a distance of 35kms to be most influential for any given site of interest. Sensitivity analysis has been performed for crucial input parameters in the formulation of seismic source and ground motion models. Site amplification study has been carried out using topographic slope as a proxy to shear velocity in the top 30 m (Vs30). A maximum of 60% to 80% amplification has been observed in the study area. The seismic hazard maps in terms of PGA have been plotted for the seismic hazard estimated at the bedrock level as well as the surface level for 2% and 10% probability of exceedance in 50 years. The hazard estimation specifically for the southern part of the west coast is the first of its kind. The investigation suspects mining-induced seismicity in Bellary and Raichur districts though there is no mention of this in the prior literature.

Keywords

Regional earthquake catalog seismicity parameters Trellis plots de-aggregation of seismic hazard surface topography hazard maps 

Notes

Acknowledgment

The authors would like to express their gratitude to Prof. Venkat Reddy, former HOD of Dept. of Civil Engineering, NITK Surathkal for his suggestions and timely advice. Indian Meteorological Department for mailing the earthquake data in time and Institute of Seismological Research for lending their resources in the successful completion of the present study. The authors would like to acknowledge the developers of CRISIS for their timely response to the clarifications sought during the study.

References

  1. Aguilar-Meléndez, A., Schroeder, M. G. O., De la Puente, J., González-Rocha, S. N., Rodriguez-Lozoya, H. E., Córdova-Ceballos, A., et al. (2017). Development and validation of software CRISIS to perform probabilistic seismic hazard assessment with emphasis on the recent CRISIS2015. Computación y Sistemas, 21(1), 67–90.Google Scholar
  2. Aki, K. (1965). 17. Maximum likelihood estimate of b in the formula logN = a-bM and its confidence limits.Google Scholar
  3. Akkar, S., Sandıkkaya, M.A. & Bommer, J.J. (2014). Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12, 359–387.  https://doi.org/10.1007/s10518-013-9461-4.Google Scholar
  4. Allen, T. I., & Wald, D. J. (2009). On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bulletin of the Seismological Society of America, 99(2A), 935–943.Google Scholar
  5. Amante, C., & Eakins, B.W. (2009). ETOPO1 1 Arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA.  https://doi.org/10.7289/v5c8276m. Accessed 28 Feb 2018.
  6. Amateur Seismic Centre, http://www.asc-india.org/, Pune, India. Accessed 31 Mar 2017.
  7. Anbazhagan, P., Vinod, J. S., & Sitharam, T. G. (2009). Probabilistic seismic hazard analysis for Bangalore. Natural Hazards, 48(2), 145–166.Google Scholar
  8. Ashish, Lindholm, C., Parvez, I. A., & Kühn, D. (2016). Probabilistic earthquake hazard assessment for peninsular India. Journal of Seismology20(2), 629–653.  https://doi.org/10.1007/s10950-015-9548-2.Google Scholar
  9. Atkinson, G. M., & Boore, D. M. (2006). Earthquake ground-motion prediction equations for eastern North America. Bulletin of the Seismological Society of America, 96(6), 2181–2205.Google Scholar
  10. Atkinson, G. M., & Boore, D. M. (2011). Modifications to existing ground-motion prediction equations in light of new data. Bulletin of the Seismological Society of America, 101(3), 1121–1135.Google Scholar
  11. Balasubrahmanyan, M. N. (2006). Geology and tectonics of India An overview (No. 9).Google Scholar
  12. Bansal, B. K., & Gupta, S. (1998). A glance through the seismicity of peninsular India. Geological Society of India, 52(1), 67–80.Google Scholar
  13. Bazzurro, P., & Cornell, C. A. (1999). Disaggregation of seismic hazard. Bulletin of the Seismological Society of America, 89(2), 501–520.Google Scholar
  14. Bhatia, S. C., Kumar, M. R., & Gupta, H. K. (1999). A probabilistic seismic hazard map of India and adjoining regions. Annals of Geophysics, 42(6).Google Scholar
  15. Bommer, J. J., & Abrahamson, N. A. (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 96(6), 1967–1977.Google Scholar
  16. Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fäh, D. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 81(5), 783–793.Google Scholar
  17. Bommer, J. J., & Scherbaum, F. (2008). The use and misuse of logic trees in probabilistic seismic hazard analyses. Earthquake Spectra, 24(4), 997–1009.Google Scholar
  18. Bommer, J. J., Stafford, P. J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-Marek, A., et al. (2017). Framework for a ground-motion model for induced seismic hazard and risk analysis in the Groningen gas field, the Netherlands. Earthquake Spectra, 33, 481–491.Google Scholar
  19. Bott, M. H. P., & Dean, D. S. (1972). Stress systems at young continental margins. Nature, 235(54), 23–25.Google Scholar
  20. Campbell, K. W. (2003). Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America. Bulletin of the Seismological Society of America, 93(3), 1012–1033.Google Scholar
  21. CEUS Ground Motion Project Final Report, EPRI, Palo Alto, CA, Dominion Energy, Glen Allen, VA, Entergy Nuclear, Jackson, MS, and Exelon Generation Company, Kennett Square, PA: 2004. 1009684.Google Scholar
  22. Chandra, U. (1977). Earthquakes of peninsular India—A seismotectonic study. Bulletin of the Seismological Society of America, 67(5), 1387–1413.Google Scholar
  23. Chandrasekharam, D. (1985). Structure and evolution of the western continental margin of India deduced from gravity, seismic, geomagnetic and geochronological studies. Physics of the Earth and Planetary Interiors, 41(2–3), 186–198.Google Scholar
  24. Chernick, M. R. (1999). Bootstrap methods: a practitioner’s guide. New York: Wiley Series in Probability and Statistics.Google Scholar
  25. Chopra, S., Kumar, D., Rastogi, B. K., Choudhury, P., & Yadav, R. B. S. (2013). Estimation of seismic hazard in Gujarat region, India. Natural Hazards, 65(2), 1157–1178.Google Scholar
  26. Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.Google Scholar
  27. Cramer, C. H., & Kumar, A. (2003). 2001 Bhuj, India, earthquake engineering seismoscope recordings and Eastern North America ground-motion attenuation relations. Bulletin of the Seismological Society of America, 93(3), 1390–1394.Google Scholar
  28. Danciu, L., Kale, Ö., & Akkar, S. (2016). The 2014 earthquake model of the Middle East: Ground motion model and uncertainties. Bulletin of Earthquake Engineering, 1–37.Google Scholar
  29. Danciu, L., Monelli, D., Pagani, M., & Wiemer, S. (2010). GEM1 hazard: review of PSHA software, gem technical Report 2010–2. Pavia: GEM Foundation.Google Scholar
  30. Das, R., Sharma, M. L., & Wason, H. R. (2016). Probabilistic seismic hazard assessment for northeast India region. Pure and Applied Geophysics, 173(8), 2653–2670.Google Scholar
  31. Dasgupta, S., Narula, P. L., Acharyya, S. K., & Banerjee, J. (2000). Seismotectonic Atlas of India and its environs. Geological Survey of India.Google Scholar
  32. Desai, S. S., & Choudhury, D. (2014). Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region. Natural Hazards, 71(3), 1873–1898.Google Scholar
  33. Edwards, B., Cauzzi, C., Danciu, L., & Fäh, D. (2016). Region-specific assessment, adjustment and weighting of ground motion prediction models: Application to the 2015 Swiss Seismic Hazard Maps. Bulletin of the Seismological Society of America.  https://doi.org/10.1785/0120150367.Google Scholar
  34. ESRI. (2011). ArcGIS desktop: release 10. Redlands: Environmental Systems Research Institute.Google Scholar
  35. Gangrade, B. K., Prasad, A. G. V., & Sharma, R. D. (1987). Earthquakes from peninsular India: Data from the Gauribidanur seismic array (No. BARC-1347). Bhabha Atomic Research Centre.Google Scholar
  36. Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.Google Scholar
  37. Grünthal, G. (1998). European Macroseismic Scale 1998 (EMS-98) European Seismological Commission, sub commission on Engineering Seismology, Working Group Macroseismic Scales. Conseil de l’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie, Vol. 15, Luxembourg.Google Scholar
  38. Grünthal, G., & Wahlström, R. (2012). The European-Mediterranean earthquake catalogue (EMEC) for the last millennium. Journal of Seismology, 16(3), 535–570.Google Scholar
  39. Guide, R. (1997). 1.165 (1997) Identification and characterization of seismic sources and determination of safe shutdown earthquake ground motion. US Nuclear Regulatory Commission.Google Scholar
  40. Gupta, I. D. (2006). Delineation of probable seismic sources in India and neighbourhood by a comprehensive analysis of seismotectonic characteristics of the region. Soil Dynamics and Earthquake Engineering, 26(8), 766–790.Google Scholar
  41. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.Google Scholar
  42. Halchuk, S., Adams, J., & Anglin, F. (2007). Revised deaggregation of seismic hazard for selected Canadian cities. In: 9th Canadian Conference on Earthquake Engineering, pp. 420–432.Google Scholar
  43. Hwang, H., & Huo, J. R. (1997). Attenuation relations of ground motion for rock and soil sites in eastern United States. Soil Dynamics and Earthquake Engineering, 16(6), 363–372.Google Scholar
  44. Incorporated Research Institutions for Seismology, Earthquake browser, http://www.iris.edu/hq/. Accessed 26 Oct 2016.
  45. International Seismological Centre, Online Bulletin, http://www.isc.ac.uk, Internatl. Seismol. Cent., Thatcham, United Kingdom, 2014. Accessed on 31 Oct 2016.
  46. IS 1893 (Part 1). (2016). Indian standard, criteria for earthquake resistant design of structures, sixth revision, Part-I. Bureau of Indian Standards, New Delhi.Google Scholar
  47. Iyengar, R. N., Chadha, R. K., Balaji Rao, K., & Raghukanth, S. T. G. (2010). Development of probabilistic seismic hazard map of India. The National Disaster Management Authority, 86.Google Scholar
  48. Iyengar, R. N., & Ghosh, S. (2004). Microzonation of earthquake hazard in greater Delhi area. Current Science, 87(9), 1193–1202.Google Scholar
  49. Jaiswal, K., & Sinha, R. (2007). Probabilistic seismic hazard estimation for peninsular India. Bulletin of the Seismological Society of America, 97(1B), 318–330.Google Scholar
  50. Kaila, K. L., Gaur, V. K., & Narain, H. (1972). Quantitative seismicity maps of India. Bulletin of the Seismological Society of America, 62(5), 1119–1132.Google Scholar
  51. Raghu Kanth, S. T. G., & Iyengar, R. N. (2007). Estimation of seismic spectral acceleration in peninsular India. Journal of Earth System Science, 116(3), 199–214.  https://doi.org/10.1007/s12040-007-0020-8.Google Scholar
  52. Kayal, J. R. (2008). Microearthquake seismology and seismotectonic of South Asia. New York: Springer Science & Business Media.Google Scholar
  53. Khattri, K. N., Rogers, A. M., Perkins, D. M., & Algermissen, S. T. (1984). A seismic hazard map of India and adjacent areas. Tectonophysics, 108(1–2), 93111–108134.Google Scholar
  54. Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b-value estimator for incomplete catalogues. Bulletin of the Seismological Society of America, 102(3), 1283–1287.Google Scholar
  55. Kolathayar, S., & Sitharam, T. G. (2012). Characterization of regional seismic source zones in and around India. Seismological Research Letters, 83(1), 77–85.Google Scholar
  56. Kolathayar, S., Sitharam, T. G., & Vipin, K. S. (2012). Spatial variation of seismicity parameters across India and adjoining areas. Natural Hazards, 60, 1365.  https://doi.org/10.1007/s11069-011-9898-1.Google Scholar
  57. Maiti, S. K., Nath, S. K., Adhikari, M. D., Srivastava, N., Sengupta, P., & Gupta, A. K. (2017). Probabilistic seismic hazard model of West Bengal. India. Journal of Earthquake Engineering, 21(7), 1113–1157.Google Scholar
  58. Martin, S., & Szeliga, W. (2010). A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bulletin of the Seismological Society of America, 100(2), 562–569.Google Scholar
  59. Milne, J. (1911). A catalogue of destructive earthquakes: AD 7 to AD 1899. The Association.Google Scholar
  60. Musson, R. M., Grünthal, G., & Stucchi, M. (2010). The comparison of macroseismic intensity scales. Journal of Seismology, 14(2), 413–428.Google Scholar
  61. Nath, S. K., & Thingbaijam, K. K. S. (2012). Probabilistic seismic hazard assessment of India. Seismological Research Letters, 83(1), 135–149.Google Scholar
  62. National Earthquake Information Center 2003 USA PDE reportings http//neic.usgs.gov/neis/epic/. Accessed on 28 Nov 2016.Google Scholar
  63. Oldham, T. (1883). A Catalogue of Indian Earthquakes from the earliest time to the end of AD 1869, Memoirs of the Geological Survey of India 19 Part 3.Google Scholar
  64. Pezeshk, S., Zandieh, A., & Tavakoli, B. (2011). Hybrid empirical ground-motion prediction equations for eastern North America using NGA models and updated seismological parameters. Bulletin of the Seismological Society of America, 101(4), 1859–1870.Google Scholar
  65. Radhakrishna, B. P. (1993). Neogene uplift and geomorphic rejuvenation of the Indian Peninsula. Current Science, 787–793.Google Scholar
  66. Ganesh Raj, K., & Nijagunappa, R. (2004). Major lineaments of Karnataka state and their relation to seismicity: A remote sensing based analysis. Journal-Geological Society of India, 63(4), 430–439.Google Scholar
  67. Raj, K. G., Paul, M. A., Hegde, V. S., & Nijagunappa, R. (2001). Lineaments and seismicity of Kerala—A remote sensing based analysis. Journal of the Indian Society of Remote Sensing, 29(4), 203–211.Google Scholar
  68. Rajendran, C. P., John, B., Sreekumari, K., & Rajendran, K. (2009). Reassessing the earthquake hazard in Kerala based on the historical and current seismicity. Journal of the Geological Society of India, 73(6), 785–802.Google Scholar
  69. Rajendran, C. P., & Rajendran, K. (2002). Historical constraints on previous seismic activity and morphologic changes near the source zone of the 1819 Rann of Kachchh earthquake: further light on the penultimate event. Seismological Research Letters, 73(4), 470–479.Google Scholar
  70. Rao, B. R. (1992). Seismicity and geodynamics of the low-to high-grade transition zone of peninsular India. Tectonophysics, 201(1–2), 175–185.Google Scholar
  71. Rao, B. R., & Rao, P. S. (1984). Historical seismicity of peninsular India. Bulletin of the Seismological Society of America, 74(6), 2519–2533.Google Scholar
  72. Rastogi, B. K. (2016). Seismicity of Indian stable continental region. Journal of Earthquake Engineering, 3, 57–93.Google Scholar
  73. Rastogi, B. K., Chadha, R. K., & Sarma, C. S. P. (1995). Investigations of June 7, 1988 earthquake of magnitude 4.5 near Idukki Dam in southern India. Pure and Applied Geophysics, 145(1), 109–122.Google Scholar
  74. Reddy, P. R., & Rao, V. V. (2000). Structure and tectonics of the Indian peninsular shield—Evidences from seismic velocities. Current Science, 899–906.Google Scholar
  75. Rout, M. M., Das, J. & Kamal (2018). Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method). Natural Hazards, 93(2), 967–985.Google Scholar
  76. Seeber, L., Armbruster, J. G. & Jacob, K. H. (1999) Probabilistic assessment of earthquake hazard for the State of Maharashtra, India. The Government of Maharashtra Earthquake Rehabilitation Cell, Mumbai, p. 60.Google Scholar
  77. Singh, S. K., Bansal, B. K., Bhattacharya, S. N., Pacheco, J. F., Dattatrayam, R. S., Ordaz, M., et al. (2003). Estimation of ground motion for Bhuj (26 January 2001; Mw 7.6) and for future earthquakes in India. Bulletin of the Seismological Society of America, 93(1), 353–370.Google Scholar
  78. Sitharam, T. G., & Anbazhagan, P. (2007). Seismic hazard analysis for the Bangalore region. Natural Hazards, 40(2), 261–278.Google Scholar
  79. Sitharam, T. G., James, N., Vipin, K. S., & Raj, K. G. (2012). A study on seismicity and seismic hazard for Karnataka State. Journal of Earth System Science, 121, 1–16.Google Scholar
  80. Sitharam, T. G., & Kolathayar, S. (2013). Seismic hazard analysis of India using areal sources. Journal of Asian Earth Sciences, 62, 647–653.Google Scholar
  81. Sitharam, T. G., Kolathayar, S., & James, N. (2015). Probabilistic assessment of surface level seismic hazard in India using topographic gradient as a proxy for site condition. Geoscience Frontiers, 6(6), 847–859.Google Scholar
  82. Srivastava, H. N., & Ramachandran, K. (1985). New catalogue of earthquakes for peninsular India during 1839–1900. Mausam, 36(3), 351–358.Google Scholar
  83. Stepp, J. C. (1973). Analysis of completeness of the earthquake sample in the Puget Sound area. Seismic zoning edited by ST Harding NOAA Tech. Report ERL.Google Scholar
  84. Subrahmanya, K. R. (1996). Active intraplate deformation in south India. Tectonophysics, 262(1–4), 231–241.Google Scholar
  85. Sykes, L. R. (1970). Seismicity of the Indian Ocean and a possible nascent island arc between Ceylon and Australia. Journal of Geophysical Research, 75(26), 5041–5055.Google Scholar
  86. Toro, G. R. (2002). Modification of the Toro et al. (1997) attenuation equations for large magnitudes and short distances. Risk Engineering Technical Report.Google Scholar
  87. Toro, G. R., Abrahamson, N. A., & Schneider, J. F. (1997). Model of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertainties. Seismological Research Letters, 68(1), 41–57.Google Scholar
  88. Uhrhammer, R. (1986). Characteristics of Northern and Central California Seismicity. Earthquake Notes, 57(1), 21.Google Scholar
  89. Valdiya, K. S. (1989). Neotectonic implication of collision of Indian and Asian plates. Indian Journal of Geology, 61, 1–13.Google Scholar
  90. Valdiya, K. S. (2013). Recent tectonic movements in the Kaveri catchment, southern India. Journal of the Indian Institute of Science, 77(3), 267.Google Scholar
  91. Verma, M., & Bansal, B. K. (2013). Seismic hazard assessment and mitigation in India: an overview. International Journal of Earth Sciences, 102(5), 1203–1218.Google Scholar
  92. Vipin, K. S., Anbazhagan, P., & Sitharam, T. G. (2009). Estimation of peak ground acceleration and spectral acceleration for South India with local site effects probabilistic approach. Natural Hazards and Earth System Sciences, 9(3), 865.Google Scholar
  93. Vipin, K. S., & Sitharam, T. G. (2013). Delineation of seismic source zones based on seismicity parameters and probabilistic evaluation of seismic hazard using logic tree approach. Journal of Earth System Science, 122(3), 661–676.Google Scholar
  94. Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382.Google Scholar
  95. Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698.Google Scholar
  96. Indian Meteorological Department (IMD), www.imd.gov.in/, New Delhi, India (Through Personal communication).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringNational Institute of Technology KarnatakaMangaloreIndia
  2. 2.Institute of Seismological ResearchGandhinagarIndia

Personalised recommendations