Advertisement

Calculation of Station-Representative Isotropic Receiver Functions

  • Seongryong Kim
  • Junkee RhieEmail author
Article
  • 54 Downloads

Abstract

The estimation of one-dimensional (1-D) isotropic structures is routine work in most receiver function (RF) analyses that generally use a reference radial RF (RRF) for each station. However, the assumption of negligible back-azimuthal dependencies in a set of RRFs for a station may not be valid because of anisotropic layering, dipping structures, or incorrect sensor orientations. This work presents a comprehensive procedure to obtain a station-representative isotropic RRF, which can be applied automatically to prepare RRF data. The method incorporates a harmonic stripping method with a grid-search for sensor orientations. An optimum angle for the sensor orientation is determined by searching for the angle that minimizes the energy in the tangential component RF (TRF). For each searched angle, possible effects by anisotropy and dipping structures are iteratively suppressed by an inversion process to exclude two- and four-robe back-azimuthal patterns. The performance of the method was first confirmed with a test using a set of highly noisy composite RRFs and TRFs. The method was then applied to RF data from the southern Korean Peninsula and southwestern Japan. Obtained isotropic RRFs and measured station orientations were found to be reliable in comparisons with results from neighboring stations and previous studies. As an automatized routine pre-process, the obtained isotropic RRF data are particularly useful for estimating 1-D isotropic structures in migration or inversion studies, which are potentially affected by back-azimuthal dependencies in RF data calculated through conventional averaging methods.

Keywords

Isotropic receiver function harmonic stripping station orientation Korean Peninsula F-net 

Notes

Acknowledgements

The authors are appreciative of Benoit Tauzin and Jung-Ung Woo for valuable discussions about the method. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20132510100060). We used data from broadband stations operated by the Korea Institute of Geoscience and Mineral Resources, Korea Meteorological Administration, and F-net.

References

  1. Agius, M. R., Rychert, C. A., Harmon, N., & Laske, G. (2017). Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings. Earth Planetary Science Letters, 474, 226–236.  https://doi.org/10.1016/j.epsl.2017.06.033.CrossRefGoogle Scholar
  2. Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin-Seismological Society of America, 81(6), 2504–2510.Google Scholar
  3. Ammon, C. J., Randall, G. E., & Zandt, G. (1990). On the nonuniqueness of receiver function inversions. Journal of Geophysical Research: Solid Earth, 95(B10), 15303–15318.  https://doi.org/10.1029/JB095iB10p15303.CrossRefGoogle Scholar
  4. Bianchi, I., Park, J., Piana Agostinetti, N., & Levin, V. (2010). Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy. Journal of Geophysical Research: Solid Earth, 115(B12), B12317.  https://doi.org/10.1029/2009JB007061.CrossRefGoogle Scholar
  5. Bodin, T., Sambridge, M., Tkalčić, H., Arroucau, P., Gallagher, K., & Rawlinson, N. (2012). Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research: Solid Earth, 117(B2), B02301.  https://doi.org/10.1029/2011JB008560.CrossRefGoogle Scholar
  6. Efron, B., & Stein, C. (1981). The jackknife estimate of variance. The Annals of Statistics, 9(3), 586–596.  https://doi.org/10.1214/aos/1176345462.CrossRefGoogle Scholar
  7. Ekström, G., & Busby, R. W. (2008). Measurements of seismometer orientation at USArray Transportable Array and Backbone stations. Seismological Research Letters, 79(4), 554–561.  https://doi.org/10.1785/gssrl.79.4.554.CrossRefGoogle Scholar
  8. Jurkevics, A. (1988). Polarization analysis of three-component array data. Bulletin of the Seismological Society of America, 78(5), 1725–1743.Google Scholar
  9. Kim, S., Dettmer, J., Rhie, J., & Tkalčić, H. (2016a). Highly efficient Bayesian joint inversion for receiver-based data and its application to lithospheric structure beneath the southern Korean Peninsula. Geophysical Journal International, 206(1), 328–344.  https://doi.org/10.1093/gji/ggw149.CrossRefGoogle Scholar
  10. Kim, S., Tkalčić, H., Rhie, J., & Chen, Y. (2016b). Intraplate volcanism controlled by back-arc and continental structures in NE Asia inferred from transdimensional Bayesian ambient noise tomography. Geophysical Research Letters, 43(16), 8390–8398.  https://doi.org/10.1002/2016GL069483.CrossRefGoogle Scholar
  11. Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9), 4749–4762.  https://doi.org/10.1029/JB084iB09p04749.CrossRefGoogle Scholar
  12. Lee, S.-J., & Rhie, J. (2015). Determining the orientations of broadband stations in south Korea using ambient noise cross-correlation. Geophysics and Geophysical Exploration, 18(2), 85–90.  https://doi.org/10.7582/GGE.2015.18.2.085. (in Korean with English abstract).CrossRefGoogle Scholar
  13. Lee, H., & Sheen, D.-H. (2015). A study on determination of orientation of borehole seismometer. Journal of the Geological Society of Korea, 51(1), 93.  https://doi.org/10.14770/jgsk.2015.51.1.93. (in Korean with English abstract).CrossRefGoogle Scholar
  14. Levin, V., & Park, J. (1998). P-SH conversions in layered media with hexagonally symmetric anisotropy: A cookbook. Pure and Applied Geophysics, 151(2–4), 669–697.  https://doi.org/10.1007/s000240050136.CrossRefGoogle Scholar
  15. Ligorría, J. P., & Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5), 1395–1400.Google Scholar
  16. Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., et al. (2004). Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net. Earth, Planets and Space, 56(8), xv–xxviii.CrossRefGoogle Scholar
  17. Olugboji, T. M., & Park, J. (2016). Crustal anisotropy beneath Pacific Ocean-Islands from harmonic decomposition of receiver functions. Geochemistry, Geophysics, Geosystems, 17(3), 810–832.  https://doi.org/10.1002/2015GC006166.CrossRefGoogle Scholar
  18. Owens, T. J., Zandt, G., & Taylor, S. R. (1984). Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic Pwaveforms. Journal of Geophysical Research: Solid Earth, 89(B9), 7783–7795.  https://doi.org/10.1029/JB089iB09p07783.CrossRefGoogle Scholar
  19. Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1), 43–71.CrossRefGoogle Scholar
  20. Pasyanos, M. E., Masters, T. G., Laske, G., & Ma, Z. (2014). LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119(3), 2153–2173.  https://doi.org/10.1002/2013jb010626.Google Scholar
  21. Randall, G. E. (1989). Efficient calculation of differential seismograms for lithospheric receiver functions. Geophysical Journal International, 99(3), 469–481.  https://doi.org/10.1111/j.1365-246X.1989.tb02033.x.CrossRefGoogle Scholar
  22. Ren, J., Tamaki, K., Li, S., & Junxia, Z. (2002). Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3–4), 175–205.  https://doi.org/10.1016/S0040-1951(01)00271-2.CrossRefGoogle Scholar
  23. Schulte-Pelkum, V., Masters, G., & Shearer, P. M. (2001). Upper mantle anisotropy from long-period P polarization. Journal of Geophysical Research: Solid Earth, 106(B10), 21917–21934.  https://doi.org/10.1029/2001JB000346.CrossRefGoogle Scholar
  24. Shen, W., Ritzwoller, M. H., Schulte-Pelkum, V., & Lin, F. C. (2013). Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophysical Journal International, 192(2), 807–836.  https://doi.org/10.1093/gji/ggs050.CrossRefGoogle Scholar
  25. Shiomi, K., & Park, J. (2008). Structural features of the subducting slab beneath the Kii Peninsula, central Japan: Seismic evidence of slab segmentation, dehydration, and anisotropy. Journal of Geophysical Research: Solid Earth, 113(B10), B10318.  https://doi.org/10.1029/2007JB005535.CrossRefGoogle Scholar
  26. Tauzin, B., Kim, S., & Kennett, B. L. N. (2017). Pervasive seismic low-velocity zones within stagnant plates in the mantle transition zone: Thermal or compositional origin? Earth and Planetary Science Letters, 477, 1–13.  https://doi.org/10.1016/j.epsl.2017.08.006.CrossRefGoogle Scholar
  27. Zha, Y., Webb, S. C., & Menke, W. (2013). Determining the orientations of ocean bottom seismometers using ambient noise correlation. Geophysical Research Letters, 40(14), 3585.  https://doi.org/10.1002/grl.50698.CrossRefGoogle Scholar
  28. Zhu, L., & Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2), 2969–2980.  https://doi.org/10.1029/1999JB900322.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Earth and Environmental SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Geology and Earth Environmental SciencesChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations