Advertisement

Relationship Between Depth of Seismicity and Heat Flow: The Case of the Gargano Area (Italy)

  • Marilena FilippucciEmail author
  • Andrea Tallarico
  • Michele Dragoni
  • Salvatore de Lorenzo
Article
  • 27 Downloads

Abstract

We consider a thermo-rheological model made of a viscoelastic half-space with Maxwell rheology and temperature-dependent viscosity. The half-space is made of layers with different values of density, thermal conductivity, activation energy and heat productivity. The model relates the surface heat flow to the depth of the brittle-ductile transition and the thickness of the seismogenic layer. The model is applied to the Gargano area (Italy) which is subject to a frequent low-magnitude seismic activity, although it lies out of the Apennine axis, which is the main Italian seismogenic area. The seismic activity in the Gargano area and surroundings occurs at depths that are systematically different in the north-eastern zone with respect to the south-western zone. In correspondence with the change in depth of earthquake foci, we observe a change in the value of surface heat flow. Starting from these observations and from the knowledge of the lithospheric structure, we propose two different geotherms for the two zones. Assuming a constant strain rate, the shear stress is computed as a function of depth and the thickness of the seismogenic layer in the two zones is inferred. The comparison of the results of the thermo-rheological model with the seismological observation is good.

Keywords

Geothermal profile seismogenic layer brittle-ductile transition 

Notes

Acknowledgements

This work is supported by the “Intervento cofinanziato dal Fondo di Sviluppo e Coesione 2007-2013 APQ Ricerca Regione Puglia: Programma regionale a sostegno della specializzazione intelligente e della sostenibilit? sociale ed ambientale - FutureInResearch. This paper is a theoretical work and does not contain new data.

References

  1. Boncio, P. (2008). Deep-crust strike-slip earthquake faulting in southern Italy aided by high fluid pressure: Insights from rheological analysis. Geological Society of London, 299, 195–210.CrossRefGoogle Scholar
  2. Boschi, E., Ferrari, G., Gasperini, P., Guidoboni, E., Smiriglio, G., Valensise, G., et al. (1980). 1 edn. Bologna: ING-SGA.Google Scholar
  3. Bosellini, A., & Morsilli, M. (2001). ‘Il promontorio del Gargano. Cenni di geologia e itinerari geologici’, Quaderni del Parco Nazionale del Gargano, Foggia pp. 1–47.Google Scholar
  4. Burgmann, R., & Dresen, G. (2008). Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annual Review of Earth and Planetary Sciences, 36(1), 531–567.CrossRefGoogle Scholar
  5. Burov, E. B. (2011). Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8), 1402–1443.CrossRefGoogle Scholar
  6. Camassi, R., Bernardini, F., Castelli, V., & Meletti, C. (2008). A 17th Century destructive seismic crisis in the Gargano area: Its implications on the understanding of local seismicity. Journal of Earthquake Engineering, 12, 12231245.CrossRefGoogle Scholar
  7. Chen, L., Berntsson, F., PengWangc, Z., & Tao, J. (2014). Seismically constrained thermo-rheological structure of the eastern Tibetan margin: Implication for lithospheric delamination. Tectonophysics, 627, 122–134.CrossRefGoogle Scholar
  8. Chen, W., & Molnar, P. (1983). Focal depth of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. Journal of Geophysical Research, 88, 4183–4214.CrossRefGoogle Scholar
  9. Chiaraluce, L., Barchi, M. R., Carannante, S., Collettini, C., Mirabella, F., Pauselli, C., et al. (2017). The role of rheology, crustal structures and lithology in the seismicity distribution of the northern Apennines. Tectonophysics, 694, 280–291.CrossRefGoogle Scholar
  10. Chiozzi, P., Barkaoui, A.-E., Rimi, A., Verdoya, M., & Zarhloule, Y. (2017). A review of surface heat-flow data of the northern Middle Atlas (Morocco). Journal of Geodynamics, 112, 58–71.CrossRefGoogle Scholar
  11. CNR-IGG (2012) Geothopica web site. Italian National Geothermal Database. http://geothopica.igg.cnr.it/. Accessed May 2018.
  12. Corrado, G., Lorenzo, S. D., Mongelli, F., Tramacere, A., & Zito, G. (1998). Surface heat flow density at the Phlegrean Fields caldera (Southern Italy). Geothermics, 27(4), 469–484.CrossRefGoogle Scholar
  13. Cotecchia, V., & Magri, G. (1966). Idrogeologia del gargano. Geol. Appl. e Idrogeol., 1, 1–80.Google Scholar
  14. CPTI Working Group (2004). ‘Catalogo Parametrico dei Terremoti Italiani, INGV, Bologna, Italy’. http://emidius.mi.ingv.it/CPTI/. Accessed May 2018.
  15. Cristofolini, R., Ghisetti, F., Scarpa, R., & Vezzani, L. (1985). Character of the stress field in the Calabrian Arc and Southern Apennines (Italy) as deduced by geological, seismological and volcanological information. Tectonophysics, 117(1), 39–58.CrossRefGoogle Scholar
  16. De Lorenzo, S., Michele, M., Emolo, A., & Tallarico, A. (2017). A 1D P-wave velocity model of the Gargano promontory (south-eastern Italy). Journal Seismology, 21(4), 909–919.  https://doi.org/10.1007/s10950-017-9643-7 CrossRefGoogle Scholar
  17. de Lorenzo, S., Romeo, A., Falco, L., Michele, M., & Tallarico, A. (2014). A first look at the Gargano (Southern Italy) seismicity as seen by the local scale OTRIONS seismic network. Annals of Geophysics, 57, 39–58.Google Scholar
  18. Del Gaudio, V., Pierri, P., Frepoli, A., Calcagnile, G., Venisti, N., & Cimini, G. (2007). A critical revision of the seismicity of northern Apulia (Adriatic microplate - Southern Italy) and implications for the identification of seismogenic structures. Tectonophysics, 436, 935.Google Scholar
  19. Della Vedova, B., Bellani, S., Pellis, G., & Arci, P. (2001). Deep temperatures and surface heat flow distribution. In G. B. Vai & P. Martini (Eds.), Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (pp. 65–76). Dordrecht: Kluwer Academic Publishers. (Chapter 7).CrossRefGoogle Scholar
  20. Della Vedova, B., Vecellio, C., Bellani, S., & Tinivella, U. (2008). Thermal modelling of the Larderello geothermal field (Tuscany, Italy). International Journal of Earth Sciences, 97(2), 317–332.CrossRefGoogle Scholar
  21. Di Stefano, R., Chiarabba, C., Lucente, F., & Amato, A. (1999). Crustal and uppermost mantle structure in Italy from the inversion of p-wave arrival times: Geodynamic implications. Geophysical Journal International, 139(2), 483–498.CrossRefGoogle Scholar
  22. Doglioni, C., Mongelli, F., & Pierri, P. (1994). The Puglia uplift (SE Italy): An anomaly in the foreland or the Apenninic subduction due to buckling or a thick continental lithosphere. Tectonics, 13(5), 1309–1321.CrossRefGoogle Scholar
  23. Doser, D., & Kanamori, H. (1986). Depth of seismicity in the Imperial Valley Region (1977–1983) and its relationship to heat flow, crustal structure and the October 15, 1979, earthquake. Journal of Geophysical Research, 91, 675–688.CrossRefGoogle Scholar
  24. Dragoni, M. (1993). The brittle-ductile transition in tectonic boundary zones. Annali di Geofisica, 36(2), 37–44.Google Scholar
  25. Dragoni, M., Doglioni, C., Mongelli, F., & Zito, G. (1996). Evaluation of stresses in two geodynamically different areas: Stable foreland and extensional backarc. Pure and Applied Geophysics, 146(2), 319–341.CrossRefGoogle Scholar
  26. Dragoni, M., & Pondrelli, S. (1991). Depth of the brittle-ductile transition in a transcurrent boundary zone. Pure and Applied Geophysics, 135(3), 447–461.CrossRefGoogle Scholar
  27. Du, Z. J., Michelini, A., & Panza, G. F. (1998). EurID: A regionalized 3-D seismological model of Europe. Physics of the Earth and Planetary Interiors, 106, 31–62.CrossRefGoogle Scholar
  28. Improta, L., De Gori, P., & Chiarabba, C. (2014). New insights into crustal structure, Cenozoic magmatism, CO2 degassing, and seismogenesis in the southern Apennines and Irpinia region from local earthquake tomography. Journal of Geophysical Research: Solid Earth, 119(11), 8283–8311.Google Scholar
  29. Loddo, M., & Mongelli, F. (1978). Heat flow in Italy. Pure and Applied Geophysics, 117(1), 135–149.CrossRefGoogle Scholar
  30. Maggiore, M., & Mongelli, F. (1991). Hydrogeothermal model of groundwater supply to San Nazario Spring (Gargano, Southern Italy). In Proceedings international conference on environmental changes in Karst Areas, IGU-UIS.Google Scholar
  31. Maggiore, M., & Pagliarulo, P. (2004) ‘Circolazione idrica ed equilibri idrogeologici negli acquiferi della Puglia. geologi e territorio’, Periodico dellOrdine dei Geologi della Puglia, Supplemento n 1.Google Scholar
  32. Milano, G., Di Giovambattista, R., & Ventura, G. (2005). Seismic constraints on the present-day kinematics of the Gargano foreland, Italy, at the transition zone between the southern and northern Apennine belts. Geophysical Research Letter, 32, L24308.CrossRefGoogle Scholar
  33. Mongelli, F. (1994). Theoretical analysis of heat transfer in semi-infinite aquifer. Geothermics, 23, 143–150.CrossRefGoogle Scholar
  34. Mongelli, F., & Ricchetti, G. (1970). Heat flow along the Candelaro Fault-Gargano Headland (Italy). Geothermics, 2, 450–458.CrossRefGoogle Scholar
  35. Pasquale, V., Chiozzi, P., & Verdoya, M. (2010). Tectonothermal processes and mechanical strength in a recent orogenic belt: Northern Apennines. Journal of Geophysical Research, 115, B03301.CrossRefGoogle Scholar
  36. Pasquale, V., Chiozzi, P., & Verdoya, M. (2013). Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy. Tectonophysics, 594, 112.CrossRefGoogle Scholar
  37. Ranalli, G. (1995). Rheology of the earth (2nd ed.). London: Chapman and Hall.Google Scholar
  38. Scarascia, A., Lozej, A., & Cassinis, R. (1994). Crustal structures of the Ligurian, Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles. Bollettino di Geofisica Teorica e Applicata, 35, 141144.Google Scholar
  39. Schubert, G., Turcotte, D. L., & Olson, P. (2001). Mantle convection in the earth and planets. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  40. Sibson, R. (1974). Frictional constraints on thrust, wrench and normal faults. Nature Physical Science, 49, 540–3.Google Scholar
  41. Sibson, R. H. (1982). Fault zone models, heat flow and the depth distribution of earthquakes in the continental crust of the United States. Bulletin Seismological Society of America, 72, 151–163.Google Scholar
  42. Tallarico, A. (2013) OTRIONS project. http://www.otrions.uniba.it/. Accessed May 2018.
  43. Trumpy, E., & Manzella, A. (2017). Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database. International Journal of Applied Earth Observation and Geoinformation, 54, 28–37.CrossRefGoogle Scholar
  44. Turcotte, D. L., & Schubert, G. (2014). Geodynamics (3rd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra e GeoambientaliUniversità di Bari - Aldo MoroBariItaly
  2. 2.Dipartimento di Fisica e AstronomiaUniversità di Bologna - Alma Mater StudiorumBolognaItaly

Personalised recommendations