Geostrophic Flow and Wind-Driven Ocean Currents Depending on the Spatial Dimensionality of the Medium

  • Rami Ahmad El-NabulsiEmail author


An approach based on noninteger fractional dimension is used to derive extended forms of the Navier–Stokes equations in order to describe geostrophic flow and wind-driven ocean current motion. The equations give rise to several features not obtained in the conventional formalism, which are discussed in some detail. This study demonstrates that the spatial dimensionality of the medium plays a crucial role in rotating fluids and ocean physics, and besides the extended Navier–Stokes equations could be used to describe turbulent ocean physical models.


Fractional Navier–Stokes equations geostrophic flow wind-driven ocean currents 



  1. Abramowitz, M., & Stegun, I. A. (1983). Handbook of mathematical functions with formulas, graphs, and mathematical tables applied mathematics series 55, ninth reprint with additional corrections of tenth original printing with corrections (December 1972) (1st ed.). Washington, DC: United States Department of Commerce, National Bureau of Standards; Dover Publications.Google Scholar
  2. Bai, Y., Jiang, Y., Liu, F., & Zhang, Y. (2017). Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation. AIP Advances, 7, 126309–126314.Google Scholar
  3. Balankin, A. S. (2017). Steady laminar flow of fractal fluids. Physics Letters A, 381, 623–628.CrossRefGoogle Scholar
  4. Balankin, A. S., & Elizarraraz, B. E. (2012). Map of fluid flow in fractal porous medium into fractal continuum flow. Physical Review E, 85, 056314.CrossRefGoogle Scholar
  5. Balankin, A. S., & Espinoza, B. (2012). Hydrodynamics of fractal continuum flow. Physical Review E, 85, 025302(R).CrossRefGoogle Scholar
  6. Carpinteri, A., & Mainardi, F. (1997). Fractals and fractional calculus in continuum mechanics. New York: Springer.CrossRefGoogle Scholar
  7. El-Nabulsi, R. A. (2017). The Hamilton–Jacobi analysis of powers of singular Lagrangians: A connection between the modified Schrödinger and the Navier–Stokes equations. Qualitative Theory of Dynamical Systems. Scholar
  8. Faber, T. E. (1995). Fluid dynamics for physicists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Galdi, G. P., & Silvestre, A. L. (2006). Existence of time-periodic solutions to the Navier–Stokes equations around a moving body. Pacific Journal of Mathematics, 223, 251–267.CrossRefGoogle Scholar
  10. Gao, F., & Yang, X. J. (2016). Fractional Maxwell fluid with fractional derivative without singular kernel. Thermal Science, 20, S871–S877.CrossRefGoogle Scholar
  11. Golmankhaneh, A. K., & Tunc, C. (2017). On the Lipschitz condition in the fractal calculus. Chaos, Solitons & Fractals, 95, 140–147.CrossRefGoogle Scholar
  12. Greengard, L., & Kropinski, M. C. (1998). An integral equation approach to the incompressible Navier–Stokes equations in two dimensions. SIAM Journal on Scientific Computing, 20, 318–336.CrossRefGoogle Scholar
  13. Hayat, T., Zaib, S., & Fetecau, C. (2010). Flows in a fractional generalized Burgers’ fluid. Journal of Porous Media, 13, 725–739.CrossRefGoogle Scholar
  14. Heibig, A., & Palade, L. I. (2008). On the rest state stability of an objective fractional derivative viscoelastic fluid model. Journal of Mathematics and Physics, 49, 043101.CrossRefGoogle Scholar
  15. Herrmann, R. (2011). Fractional calculus: An introduction for physicists. Singapore: World Scientific.CrossRefGoogle Scholar
  16. Huang, H. P. (2016). Geophysical and environmental fluids dynamics. Arizona: Lectures given at School for Engineering of Matter, Transport and Energy, Arizona State University.Google Scholar
  17. Jamil, M., Khan, N.A. (2011). Slip effects in fractional viscoelastic fluids. International Journal of Differential Equations, Article ID193813, 19Google Scholar
  18. Jianhua X (2005) Motion equation of vorticity for Newton fluid. arXiv:physics/0512051
  19. Kamalov, T. (2011). Axiomatization of mechanics. Quantum Computers and Computing, 11, 52–57.Google Scholar
  20. Khan, N. A. (2009). Analytical study of Navier–Stokes equation with fractional orders using He’s homotopy perturbation and variational iteration methods. International Journal of Nonlinear Sciences and Numerical Simulation, 10(9), 1127–1134.Google Scholar
  21. Kulish, V. V., & Lage, J. L. (2002). On the relationship between fluid velocity and de Broglie’s wave function and the implications to the Navier–Stokes equation. International Journal of Fluid Mechanics, 29, 40–52.Google Scholar
  22. Kumar, D., Singh, J., & Kumar, S. (2015). A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid. Journal of the Association of Arab Universities for Basic and Applied Sciences, 17, 14–19.CrossRefGoogle Scholar
  23. Landau, L. D., & Lifshitz, E. M. (1987). Fluid mechanics, course of theoretical physics (2nd ed.). Oxford: Pergamon.Google Scholar
  24. Lee, S., Ryi, S.K., Lim, H. (2017) Solutions of Navier-Stokes equation with Coriolis force. Advances in Mathematical Physics, 2017, Article ID7042696, 1–9Google Scholar
  25. Li, D., & Sinai, Y. G. (2008). Blow ups of complex solutions of the 3D Navier–Stokes system and renormalization group method. Journal of the European Mathematical Society, 10, 267–313.CrossRefGoogle Scholar
  26. Li, X., Yang, X., & Zhang, Y. (2017). Error estimates of mixed finite element methods for time fractional Navier–Stokes equations. Journal of Scientific Computing, 70, 500–515.CrossRefGoogle Scholar
  27. Lin, P., Chen, X., & Ong, M. (2004). Finite element methods based on a new formulation for the nonstationary incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 46, 1169–1180.CrossRefGoogle Scholar
  28. Meznar, M. (2005). Fluid flows in rotating frames. Jadranska: Lecture given at Department of Physics, University of Ljubljana.Google Scholar
  29. Momani, S., & Odibat, Z. (2016). Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Applied Mathematics and Computation, 177, 488–494.CrossRefGoogle Scholar
  30. Naqvi, Q. A., & Zubair, M. (2016). On cylindrical model of electrostatic potential in fractional dimensional space. Optik-International Journal for Light and Electron Optics, 127, 3243–3247.CrossRefGoogle Scholar
  31. Nazarenko, S. (2004). Fluid dynamics via examples and solutions. Taylor and Francis Group: CRC Press.Google Scholar
  32. Neumann, G., & Pierson, W. J., Jr. (1966). Principles of physical oceanography. Englewood Cliffs: Prentice-Hall. Google Scholar
  33. Pedlosky J. (1982), Friction and viscous flow. In: Geophysical fluid dynamics. Springer study edition. Berlin: Springer, 1982Google Scholar
  34. Placek, T. D. (2013). Fluids review notes. Alabama: Lectures given at the Chemical Engineering Department, Auburn University.Google Scholar
  35. Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Price, J. F., Weller, R. A., & Schudlich, R. R. (1987). Wind-driven ocean currents and Ekman transport. Science, 238, 1534–1538.CrossRefGoogle Scholar
  37. Pullin, D. I., & Saffman, G. (1998). Vortex dynamics in turbulence. Annual Review of Fluid Mechanics, 30, 31–51.CrossRefGoogle Scholar
  38. Rannacher, R. (1993). On the numerical solution of the incompressible Navier–Stokes equations. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 73, 203–216.CrossRefGoogle Scholar
  39. Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M., & Stefani, F. (2018). Stability and instability of hydromagnetic Taylor–Couette flows. Physics Reports, 741, 1–89.CrossRefGoogle Scholar
  40. Saffman, P. G. (1992). Vortex dynamics. Cambridge: Cambridge University Press.Google Scholar
  41. Stillinger, F. H. (1977). Axiomatic basis for spaces with noninteger dimensions. Journal of Mathematics and Physics, 18, 1224–1234.CrossRefGoogle Scholar
  42. Strumendo, M. (2016). Solution of the incompressible Navier–Stokes equations by the method of lines. International Journal for Numerical Methods in Fluids, 80, 317–339.CrossRefGoogle Scholar
  43. Suykens, J. A. K., & Vandewalle, J. P. L. (1998). Nonlinear modeling: Advanced black-box techniques. Berlin: Springer.CrossRefGoogle Scholar
  44. Tao, T. (2007). Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data. Journal of Hyperbolic Differential Equations, 4, 259–266.CrossRefGoogle Scholar
  45. Tarasov, V. E. (2011). Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media. New York: Springer.Google Scholar
  46. Tarasov, V. E. (2014). Anisotropic fractal media by vector calculus in noninteger dimensional space. Journal of Mathematics and Physics, 55, 083510.CrossRefGoogle Scholar
  47. Tripathi, D. (2011). Peristaltic transport of fractional Maxwell fluids in uniform tubes: Applications in endoscopy. Computers & Mathematics with Applications, 62, 1116–1126.CrossRefGoogle Scholar
  48. Vallis, G. (2006). Atmospheric and oceanic fluid dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Wang, K., & Liu, S. (2016). Analytical study of time fractional Navier–Stokes equation by using transform methods. Advances in Difference Equations, 61, 1–12.Google Scholar
  50. Wang, S., & Xu, M. (2009). Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Analysis: Real World Applications, 10, 1087–1096.CrossRefGoogle Scholar
  51. Yu, J. Y. (2017). Geophysical fluid dynamics. Irvine: Lectures given at Department of Earth System Science, School of Physics Sciences, University of California.Google Scholar
  52. Zhou, Y., & Peng, L. (2017). On the time-fractional Navier–Stokes equations. Computers and Mathematics with Applications, 73, 874–891.CrossRefGoogle Scholar
  53. Zubair, M., & Ang, L. K. (2016). Fractional-dimensional Child-Langmuir law for a rough cathode. Physics of Plasmas, 23, 072118.CrossRefGoogle Scholar
  54. Zubair, M., Mughal, M. J., & Naqvi, Q. A. (2010). The wave equation and general plane wave solutions in fractional space. Progress in Electromagnetics Research, 19, 137–146.CrossRefGoogle Scholar
  55. Zubair, M., Mughal, M. J., & Naqvi, Q. A. (2011a). Electromagnetic wave propagation in fractional space. In: Electromagnetic Fields and Waves in Fractional Dimensional Space. SpringerBriefs in Applied Sciences and Technology. Beriln: Springer, pp 27–60CrossRefGoogle Scholar
  56. Zubair, M., Mughal, M. J., & Naqvi, Q. A. (2011b). An exact solution of spherical wave in D-dimensional fractional space. Journal of Electromagnetic Waves and Applications, 25, 1481–1491.Google Scholar
  57. Zubair M, Mughal MJ, Naqvi QA (2012) Electromagnetic wave propagation in fractional space. In Electromagnetic fields and waves in fractional dimensional space. Berlin: SpringerGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematics and Physics DivisionsAthens Institute for Education and ResearchAthensGreece

Personalised recommendations