Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1397–1416 | Cite as

Fractal Analysis of Earthquake Sequences in the Ibero-Maghrebian Region

  • M. HamdacheEmail author
  • J. Henares
  • J. A. Peláez
  • Y. Damerdji


The main topic of this study is to characterize the seismic activity in the studied region by performing qualitative and quantitative analyses of several selected seismic sequences (seismic swarms and aftershock sequences). Clustering analysis of the selected seismic sequences, located in recent years in the Ibero-Maghrebian region, has been performed using the concept of fractal dimension. Analyses of the temporal variation of the fractal dimensions \(D_{ - 2} (T)\), \(D_{0} (T)\) and \(D_{2} (T)\), as well as the spectral slope, have been also performed in order to characterize each analyzed sequence. The variation of the b-value parameter of the Gutenberg-Richter relationship with time has been derived using the windowing method, and a comparative analysis of the variation in time and space of the \(D_{2}\)-value is assessed. Taking into account that b-value variations are often used in seismic hazard and earthquake forecasting studies, this type of work highlights the importance of fractal dimension research in seismic sequences. From our dataset, a positive correlation between b-value and the fractal dimension \(D_{2}\) has been obtained, as shown in the following relations
$$D_{2} = 1.36\left( { \pm 0.27} \right)b + 0.59( \pm 0.26)$$
$$b = 0.74\left( { \pm 0.13} \right)D_{2} - 0.44( \pm 0.24).$$


Earthquake sequences fractal dimensions b-value correlation integral 



The authors are grateful to the Editor Pr. A. Kijko for his helpful advice. We would like to thank the anonymous reviewers for their valuable comments and suggestions that greatly contributed to the improvement of the quality of the manuscript. This research was supported by the Algerian CRAAG, the Spanish Seismic Hazard and Active Tectonics research group, and the Spanish MINECO CGL2015-65,602-R and CGL2016-80687-R projects. The authors acknowledge the Spanish Instituto Geográfico Nacional for providing them with the earthquake database used in this study.

Supplementary material

24_2018_2072_MOESM1_ESM.pdf (11.4 mb)
Supplementary material 1 (PDF 11640 KB)


  1. Aki, K. (1965). Maximum likelihood estimate of b in the formula Log N = ab M and its confidence limits. Bulletin of the Earthquake Research Institute Tokyo University, 43, 237–239.Google Scholar
  2. Aki, K. (1981). A probabilistic synthesis of precursory phenomena. In D. W. Simpson & P. G. Richards (Eds.), Earthquake prediction (pp. 556–574). Washington: American Geophysical Union.Google Scholar
  3. Alguacil, G., Vidal, F., Navarro, F., García Jerez, A., & Pérez Muelas, J. (2014). Characterization of earthquake shaking severity in the town of Lorca during the May 11, 2011 event. Bulletin of Earthquake Engineering, 12, 1889–1908.CrossRefGoogle Scholar
  4. Ashkenazy, Y., Baker, D. R., Gildor, H., & Havlin, S. (2003). Nonlinearity and multifractality of climate change in the past 420000 years. Geophysical Research Letters, 30, 2146–2149.CrossRefGoogle Scholar
  5. Caccamo, D., Barbieri, F., D’Amico, S., Barberieri, F. M., & Lagana, C. (2007a). Umbria_Marche sequence (Central Italy): a study on its aftershock sequence. Bollettino di GeofisicaTeoricae Applicata, 48, 385–398.Google Scholar
  6. Caccamo, D., Barbieri, F. M., Lagana, C., D’Amico, S., & Parrillo, F. (2007b). A study about the aftershock sequence of 27 December 2003 in Loyalty Islands. Bollettino di GeofisicaTeorica e Applicata, 48, 53–61.Google Scholar
  7. Enescu, B., & Ito, K. (2002). Spatial analysis of the frequency-magnitude distribution and decay rate of the 2000 Western Tottori earthquake. Earth, Planets Space, 54, 847–860.CrossRefGoogle Scholar
  8. Feder, J. (1988). Fractals. New York: Plenum Press.CrossRefGoogle Scholar
  9. Frolich, C., & Davis, S. (1993). Teleseismic b-values; or much ado about 1.0. Journal of Geophysical Research, 98, 631–644.CrossRefGoogle Scholar
  10. Galindo-Zaldivar, J., Ercilla, G., Estrada, F., Catalán, M., d’Acremont, E., Azzouz, O., et al. (2018). Imaging the growth of recent faults: the case of 2016–2017 seismic sequence sea bottom deformation in the Alboran Sea (Western Mediterranean). Tectonics. Scholar
  11. Godano, C., & Caruso, V. (1995). Multifractal analysis of earthquake catalogues. Geophysical Journal International, 121, 385–392.CrossRefGoogle Scholar
  12. Goltz, C. (1997). Fractal and chaotic properties of earthquakes. Lecture notes in earth sciences (Vol. 77). Berlin: Springer.CrossRefGoogle Scholar
  13. Grassberger, P., & Procaccia, I. (1983a). Measuring the strangeness of strange attractors. Physica D, 9, 189–208.CrossRefGoogle Scholar
  14. Grassberger, P., & Procaccia, I. (1983b). Characterizations of stranger attractors. Physical Review Letters, 50, 346–349.CrossRefGoogle Scholar
  15. Gutenberg, B., & Richter, C. F. (1956). Magnitude and energy of earthquakes. Annali di Geofisica, 9, 1–15.Google Scholar
  16. Hamdache, M., Peláez, J. A., Henares, J., & Damerdji, Y. (2016a). Analysis of the 2012–2013 Torreperogil-Sabiote seismic swarm. Physics and Chemistry of the Earth, 95, 101–112.CrossRefGoogle Scholar
  17. Hamdache, M., Peláez, J. A., Kijko, A., & Smit, A. (2016b). Energetic and spatial characterization of seismicity in the Algeria-Morocco region. Natural Hazards, 86, 273–293.CrossRefGoogle Scholar
  18. Henares, J., López Casado, C., Badal, J., & Peláez, J. A. (2010). Seismicity pattern of the Betic Cordillera (southern Spain) derived from the fractal properties of earthquakes and faults. Earthquake Science, 23, 309–323.CrossRefGoogle Scholar
  19. Hentschel, H. G. E., & Procaccia, I. (1983). The infinite number of generalized dimensions of fractals and strange attractors. Physica D, 8, 435–444.CrossRefGoogle Scholar
  20. Hirata, T. (1989a). Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales. Pure and Applied Geophysics, 131, 157–170.CrossRefGoogle Scholar
  21. Hirata, T. (1989b). A correlation between the b value and the fractal dimension of earthquakes. Journal of Geophysical Research, 94, 7507–7514.CrossRefGoogle Scholar
  22. Hirata, T., Satoh, T., & Ito, K. (1987). Fractal structure of spatial distribution of microfracturing in rock. Geophysical Journal of the Royal Astronomical Society, 90, 369–374.CrossRefGoogle Scholar
  23. Kagan, Y., & Jackson, D. (1991). Long-term earthquake clustering. Geophysical Journal International, 104, 117–133.CrossRefGoogle Scholar
  24. Kagan, Y., & Knopoff, L. (1980). Spatial distribution of earthquakes: The two point correlation function. Geophysical Journal of the Royal Astronomical Society, 62, 303–320.CrossRefGoogle Scholar
  25. Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65, 1073–1095.Google Scholar
  26. Lana, X., Martínez, M. D., Posadas, A. M., & Canas, J. A. (2005). Fractal behavior of the seismicity in the Southern Iberian Peninsula. Nonlinear Processes in Geophysics, 12, 353–361.CrossRefGoogle Scholar
  27. Li, D., Zheng, Z., & Wang, B. (1994). Research into the multifractal earthquake spatial distribution. Tectonophysics, 233, 91–97.CrossRefGoogle Scholar
  28. López Casado, C., Henares, J., Badal, J., & Peláez, J. A. (2014). Multifractal images of the seismicity in the Ibero-Maghrebian region (westernmost boundary between the Eurasian and African plates). Tectonophysics, 627, 82–97.CrossRefGoogle Scholar
  29. Mandal, P., Mabawonku, A. O., & Dimri, V. P. (2005). Self-organized fractal seismicity of reservoir triggered earthquakes in the Koyna-Warna seismic zone, western India. Pure and Applied Geophysics, 162, 73–90.CrossRefGoogle Scholar
  30. Mandelbrot, B. B. (1989). Multifractal measures, especially for the geophysicist. Pure and Applied Geophysics, 131, 5–42.CrossRefGoogle Scholar
  31. Márquez Ramírez, V. H., Nava, F. A., & Zúñiga, F. R. (2015). Correcting the Gutenberg-Richter b-value for effects of rounding and noise. Earthquake Science, 28, 129–134.CrossRefGoogle Scholar
  32. Martin, M. T., Plastino, A. R., & Plastino, A. (2000). Tsallis-like information measures and the analysis of complex signals. Physica A, 275, 262–271.CrossRefGoogle Scholar
  33. Martínez Cuevas, S., & Gaspar Escribano, J. M. (2016). Reassessment of intensity estimates from vulnerability and damage distributions: the 2011 Lorca earthquake. Bulletin of Earthquake Engineering, 14, 2679–2703.CrossRefGoogle Scholar
  34. Martínez, M. D., Lana, X., Posadas, A. M., & Pujades, L. (2005). Statistical distribution of elapsed times and distances of seismic events: the case of the Southern Spain seismic catalogue. Nonlinear Processes in Geophysics, 12, 235–244.CrossRefGoogle Scholar
  35. Martínez López, F., CabrerizoVílchez, M. A., & Hidalgo Álvarez, R. (2001). Multifractal behavior of the estimated natural measure for colloidal cluster-cluster aggregation in 2-D. Physica A, 291, 1–12.CrossRefGoogle Scholar
  36. Marzocchi, W., & Sandri, L. (2003). A review and new insights onthe estimation of the b value and its uncertainty. Annales Geophysicae, 46, 1271–1282.Google Scholar
  37. Mignan A, Woessner J (2012) Estimating the magnitude of completeness for earthquake catalogs, Online Resource for Statistical Seismicity Analysis. Available at http//
  38. Molchan, G., & Kronrod, T. (2007). Seismic interevent time: a spatial scaling and multifractality. Pure and Applied Geophysics, 164, 75–96.CrossRefGoogle Scholar
  39. Morales, J., Azañón, J. M., Stich, D., Roldán, F. J., Pérez Peña, J. V., Martín, R., et al. (2015). The 2012–2013 earthquake swarm in the eastern Guadalquivir basin (South Spain): a case of heterogeneous faulting due to oroclinal bending. Gondwana Research, 28, 1566–1578.CrossRefGoogle Scholar
  40. Nerenberg, M. A. H., & Essex, C. (1990). Correlation dimension and systematic geometric effects. Physical Review A, 42, 7065–7074.CrossRefGoogle Scholar
  41. Ogata, Y., Akaike, H., & Katsura, K. (1982). The application of linear intensity model to the investigation of casual relation between a point process and another stochastic process. Annals of the Institute of Statistical Mathematics, 34, 373–387.CrossRefGoogle Scholar
  42. Öncel, A. O., Alptekin, Ö., & Main, I. (1995). Temporal variations of the fractal properties of seismicity in the western part of the North Anatolian fault zone possible artifacts due to improvements in station coverage. Nonlinear Processes in Geophysics, 2, 147–157.CrossRefGoogle Scholar
  43. Paladin, G., & Vulpiani, A. (1987). Anomalous scaling laws in multifractal objects. Physics Reports, 156, 147–179.CrossRefGoogle Scholar
  44. Pawelzik, K., & Schuster, H. G. (1987). Generalized dimensions and entropies from a measured time series. Physical Review, 35, 481–484.CrossRefGoogle Scholar
  45. Pedrera, A., Ruiz-Constán, A., Marín-Lechado, C., Galindo-Zaldívar, J., González, A., & Peláez, J. A. (2013). Seismic transpressive basement faulta and monocline development in a foreland basin (Eastern Guadalquivir, SE Spain). Tectonics, 32, 1571–1586.CrossRefGoogle Scholar
  46. Peitgen, H. O., Jurgens, H., & Saupe, D. (1992). Chaos and fractals: new frontiers of science. Heidelberg: Springer.CrossRefGoogle Scholar
  47. Power, P. M., & Jordan, T. H. (2010). Distribution of seismicity across strike-slip faults in California. Journal of Geophysical Research, 115, B05305.CrossRefGoogle Scholar
  48. Schorlemmer, D. G., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437, 539–542.CrossRefGoogle Scholar
  49. Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitudefrequency b value. Bulletin of the Seismological Society of America, 72, 1677–1687.Google Scholar
  50. Shimizu, Y., Thurner, S., & Ehrenberger, K. (2002). Multifractal spectra as a measure of complexity in human posture. Fractals, 10, 103–116.CrossRefGoogle Scholar
  51. Smalley, R. F., Chatelain, J. L., Turcotte, D. L., & Prévot, R. (1987). A fractal approach to the clustering of earthquakes: application to the seismicity of the New Hebrides. Bulletin of the Seismological Society of America, 77, 1368–1381.Google Scholar
  52. Smirnova, N. A., Kiyashchenko, D. A., Troyan, V. N., & Hayakawa, M. (2013). Multifractal approach to study the earthquake precursory signatures using the ground-based observations. Review of Applied Physics, 2, 58–67.Google Scholar
  53. Spada, M., Wiemer, S., & Kissling, E. (2011). Quantifying a potential bias in probabilistic seismic hazard assessment: seismotectonic zonation with fractal properties. Bulletin of the Seismological Society of America, 101, 2694–2711.CrossRefGoogle Scholar
  54. Stoyan, D., & Stoyan, H. (1994). Fractals, random shapes, and point fields: method of geometrical statistics. Hoboken: Wiley.Google Scholar
  55. Stich, D., Mancilla, F. L., Baumont, D., & Morales, J. (2004). Source analysis of the Mw 6.3 2004 Al Hoceima earthquake (Morocco) using regional apparent source time functions. Journal of Geophysical Research, 110, B06306.Google Scholar
  56. Takashi, I., Feigelson, E. D., Akritas, M. G., & Babu, G. J. (1990). Linear regression in astronomy. The Astrophysical Journal, 364, 104–113.CrossRefGoogle Scholar
  57. Telesca, L., & Lapenna, V. (2006). Measuring multifractality in seismic sequences. Tectonophysics, 423, 115–123.CrossRefGoogle Scholar
  58. Utsu, T. (1965). A method for determining the value of b in a formula log n = ab M showing the magnitude-frequency relation for earthquakes. Geophysical Bulletin Hokkaido University, 13, 99–103.Google Scholar
  59. Van der Woerd, J., Dorbath, C., Ousadou, F., Dorbath, L., Delouis, B., Jacques, E., et al. (2015). The Al Hoceima Mw 6.4 earthquake of 24 February 2004 and its aftershocks sequence. Journal of Geodynamics, 77, 89–109.CrossRefGoogle Scholar
  60. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.CrossRefGoogle Scholar
  61. Wyss, M., Sammis, C. G., Nadeau, R. M., & Wiemer, S. (2004). Fractal dimension and b-value on creeping and locked Patches of the San Andrea Fault near Parkfield, California. Bulletin of the Seismological Society of America, 94, 410–421.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Département Etudes et Surveillance SismiqueCRAAGAlgiersAlgeria
  2. 2.Department of PhysicsUniversity of JaénJaénSpain

Personalised recommendations