Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1487–1502 | Cite as

Quantifying Seismicity Parameter Uncertainties and Their Effects on Probabilistic Seismic Hazard Analysis: A Case Study of Iran

  • Milad KowsariEmail author
  • Nasrollah Eftekhari
  • Andrzej Kijko
  • Ehsan Yousefi Dadras
  • Hamed Ghazi
  • Elham Shabani
Article
  • 128 Downloads

Abstract

Probabilistic seismic hazard analysis (PSHA) can accommodate various sources of uncertainties and it provides a rational framework for the precise portrayal of the hazard of a given region. Often, the information used in the PSHA is incomplete and uncertain; therefore, the question arises how the uncertainty of the input data affects the estimated hazard characteristics. In this study, sensitivity analysis (SA) was conducted to identify the most dominant inputs affecting the assessment of the key seismicity parameters (SPs), including the mean seismic activity rate λ, b value of Gutenberg–Richter, and the maximum possible earthquake magnitude \(m_{ \hbox{max} }\). The study was applied in five areas of Iran, for which such analyses have not been conducted in previous studies. Subsequently, Monte Carlo simulation was employed to determine the effects of the uncertain input parameters on PSHA relevant to spectral accelerations corresponding to 10% and 2% probability of exceedance at least once in 50 years. For this purpose, a unified and declustered earthquake catalogue was used for the five major seismotectonic provinces of Iran (Alborz-Azarbayejan, Zagros, Central-East Iran, Koppeh Dagh, and Makran). The results showed that the last (complete) part of the catalogue has a significant effect on the estimated value of seismic activity and the b value. In contrast, its influence is insignificant on the area-characteristic maximum possible earthquake magnitude, for which the most influential inputs are the maximum observed earthquake and its uncertainty. Furthermore, the uncertainties of the input SPs affected the seismic hazard estimates substantially and led to significant variability in the estimated ground motion characteristics.

Keywords

PSHA sensitivity analysis uncertainty analysis seismicity parameters 

References

  1. Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a-bM and its confidence limits. Bulletin of the Earthquake Research Institute Tokyo Univ., 43, 237–239.Google Scholar
  2. Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismological Research Letters, 81(2), 195–206.Google Scholar
  3. Akkar, S., Kale, Ö., Yakut, A., & Çeken, U. (2018). Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bulletin of Earthquake Engineering, 16, 3439–3463.Google Scholar
  4. Ambraseys, N. N. (2001). Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophysical Journal International, 145(2), 471–485.Google Scholar
  5. Anderson, J. G., Wesnousky, S. G., & Stirling, M. W. (1996). Earthquake size as a function of fault slip rate. Bulletin of the Seismological Society of America, 86(3), 683–690.Google Scholar
  6. Ansari, A., Noorzad, A., & Zafarani, H. (2009). Clustering analysis of the seismic catalog of Iran. Computers & Geosciences, 35(3), 475–486.Google Scholar
  7. Assatourians, K., & Atkinson, G. M. (2013). EqHaz: An open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismological Research Letters, 84(3), 516–524.Google Scholar
  8. Atkinson, G. M. (2012). Integrating advances in ground-motion and seismic-hazard analysis. In: Proceedings of the 15th World Conference on Earthquake Engineering.Google Scholar
  9. Atkinson, G. M., Bommer, J. J., & Abrahamson, N. A. (2014). Alternative approaches to modeling epistemic uncertainty in ground motions in probabilistic seismic-hazard analysis. Seismological Research Letters, 85, 1141–1144.Google Scholar
  10. Auder, B., & Iooss, B. (2008). Global sensitivity analysis based on entropy. Safety, reliability and risk analysis-Proceedings of the ESREL 2008 Conference, 2107–2115.Google Scholar
  11. Bastami, M., & Kowsari, M. (2014). Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution. Structural Engineering and Mechanics, 49(3), 355–372.Google Scholar
  12. Bayrak, Y., Öztürk, S., Çınar, H., Kalafat, D., Tsapanos, T. M., Koravos, G. C., et al. (2009). Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Engineering Geology, 105(3), 200–210.Google Scholar
  13. Beirlant, J., Kijko, A., Reynkens, T., et al. (2018). Estimating the maximum possible earthquake magnitude using extreme value methodology: The Groningen case. Natural Hazards.  https://doi.org/10.1007/s11069-017-3162-2.Google Scholar
  14. Berberian, M. (1976). Seismotectonic map of Iran 1: 2 500 000. NCC offset Press.Google Scholar
  15. Berberian, M., & Yeats, R. S. (1999). Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological Society of America, 89(1), 120–139.Google Scholar
  16. Bommer, J. J., Coppersmith, K. J., Coppersmith, R. T., Hanson, K. L., Mangongolo, A., Neveling, J., et al. (2015). A SSHAC level 3 probabilistic seismic hazard analysis for a new-build nuclear site in South Africa. Earthq. Spectra, 31, 661–698.Google Scholar
  17. Bommer, J. J., & Crowley, H. (2017). The purpose and definition of the minimum magnitude limit in PSHA calculations. Seismological Research Letters, 88(4), 1097–1106.Google Scholar
  18. Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.Google Scholar
  19. Cornell, C. A. (1994). Statistical analysis of maximum magnitudes. In A. C. Johnston, K. J. Coppersmith, L. R. Kanter, & C. A. Cornell (Eds.), The earthquakes of stable continental regions (Vol. 1, pp. 5–10)., Assessment of large earthquake potential Palo Alto: Electric Power Research Institute.Google Scholar
  20. De Rocquigny, E., Devictor, N., & Tarantola, S. (2008). Uncertainty in industrial practice: a guide to quantitative uncertainty management. Hoboken: Wiley.Google Scholar
  21. Douglas, J. (2018a). Calibrating the backbone approach for the development of earthquake ground motion models. Best Practice in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations: Issues and Challenges Towards Full Seismic Risk Analysis (pp. 1–11). France: Cadarache-Château.Google Scholar
  22. Douglas, J. (2018b). Capturing geographically-varying uncertainty in earthquake ground motion models or What we think we know may change. In: Recent advances in earthquake engineering in Europe: 16th European Conference on Earthquake Engineering-Thessaloniki, Greece. Springer, pp. 153–181.Google Scholar
  23. Eggels, A. W., & Crommelin, D. T. (2018). Quantifying dependencies for sensitivity analysis with multivariate input sample data. arXiv preprint arXiv:1802.01841.
  24. Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778.Google Scholar
  25. Feyissa, A. H., Gernaey, K. V., & Adler-Nissen, J. (2012). Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass transfer for a contact baking process. Journal of Food Engineering, 109(2), 281–290.Google Scholar
  26. Field, E. H., Jackson, D. D., & Dolan, J. F. (1999). A mutually consistent seismic-hazard source model for southern California. Bulletin of the Seismological Society of America, 89(3), 559–578.Google Scholar
  27. Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.Google Scholar
  28. Gustafson, P., Srinivasan, C., & Wasserman, L. (1996). Local sensitivity analysis. Bayesian statistics, 5, 197–210.Google Scholar
  29. Hamdache, M., Peláez, J. A., Kijko, A., & Smit, A. (2017). Energetic and spatial characterization of seismicity in the Algeria-Morocco region. Natural Hazards, 86(2), 273–293.Google Scholar
  30. Hanks, T. C., & Bakun, W. H. (2002). A bilinear source-scaling model for M-log A observations of continental earthquakes. Bulletin of the Seismological Society of America, 92(5), 1841–1846.Google Scholar
  31. Hintersberger, E., Scherbaum, F., & Hainzl, S. (2007). Update of likelihood-based ground-motion model selection for seismic hazard analysis in western central Europe. Bulletin of Earthquake Engineering, 5, 1–16.Google Scholar
  32. Huoh, Y. J. (2013). Sensitivity analysis of stochastic simulators with information theory. Berkeley: University of California.Google Scholar
  33. Kagan, Y. Y. (2003). Accuracy of modern global earthquake catalogs. Physics of the Earth and Planetary Interiors, 135(2–3), 173–209.Google Scholar
  34. Kalaneh, S., & Agh-Atabai, M. (2016). Spatial variation of earthquake hazard parameters in the Zagros fold and thrust belt, SW Iran. Natural Hazards, 82(2), 933–946.Google Scholar
  35. Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A. (2013). Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology, 17(3), 897–911.Google Scholar
  36. Kazemian, J., & Hatami, M. R. (2017). Temporal variations of seismic parameters in Tehran region. Pure and Applied Geophysics, 174, 1–12.Google Scholar
  37. Kazemi-Beydokhti, M., Abbaspour, R. A., & Mojarab, M. (2017). Spatio-temporal modeling of seismic provinces of Iran using DBSCAN algorithm. Pure and Applied Geophysics, 174(5), 1937–1952.Google Scholar
  38. Khodaverdian, A., Zafarani, H., Rahimian, M., & Dehnamaki, V. (2016). Seismicity parameters and spatially smoothed seismicity model for Iran. Bulletin of the Seismological Society of America, 106(3), 1133–1150.Google Scholar
  39. Kijko, A. (2004). Estimation of the maximum earthquake magnitude, m max. Pure and Applied Geophysics, 161(8), 1655–1681.Google Scholar
  40. Kijko, A. (2012). On Bayesian procedure for maximum earthquake magnitude estimation. Research in Geophysics., 2, e7.  https://doi.org/10.4081/rg.2012.e7,46-51.Google Scholar
  41. Kijko, A., & Sellevoll, M. A. (1989). Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bulletin of the Seismological Society of America, 79(3), 645–654.Google Scholar
  42. Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82(1), 120–134.Google Scholar
  43. Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59(4), 674–700.Google Scholar
  44. Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102(3), 1283–1287.Google Scholar
  45. Kijko, A., Smit, A., & Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bulletin of the Seismological Society of America, 106(3), 1210–1222.Google Scholar
  46. Klügel, J. U. (2008). Seismic hazard analysis—Quo vadis? Earth-Science Reviews, 88(1), 1–32.Google Scholar
  47. Kozachenko, L. F., & Leonenko, N. N. (1987). Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii, 23(2), 9–16.Google Scholar
  48. Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. Physical Review E, 69(6), 066138.Google Scholar
  49. Krzykacz-Hausmann, B. (2001). Epistemic sensitivity analysis based on the concept of entropy. International symposium on sensitivity analysis of model output, pp. 53–57.Google Scholar
  50. Leonard, M. (2010). Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971–1988.Google Scholar
  51. Lüdtke, N., Panzeri, S., Brown, M., Broomhead, D. S., Knowles, J., Montemurro, M. A., et al. (2008). Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks. Journal of the Royal Society, Interface, 5(19), 223–235.Google Scholar
  52. Madahizadeh, R., Mostafazadeh, M., & Ansari, A. (2016). Long-term seismicity behavior of the Zagros region in Iran. Pure and Applied Geophysics, 173(8), 2637–2652.Google Scholar
  53. McCalpin, J. P. (2009). Application of paleoseismic data to seismic hazard assessment and neotectonic research. International Geophysics, 95, 1–106.Google Scholar
  54. McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute.Google Scholar
  55. McGuire, R. K., & Arabasz, W. J. (1990). An introduction to probabilistic seismic hazard analysis. Geotechnical and Environmental Geophysics, 1, 333–353.Google Scholar
  56. McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.Google Scholar
  57. Mirzaei, N., Gao, M., & Chen, Y. T. (1997). Seismicity in major seismotectonic provinces of Iran. Earthquake Research in China, 11(4), 351–361.Google Scholar
  58. Mirzaei, N., Mengtan, G., & Yuntai, C. (1998). Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces. Journal of Earthquake Prediction Research, 7, 465–495.Google Scholar
  59. Mirzaei, N., Shabani, E., & Bafrouei, S. H. M. (2014). Comment on “A Unified Seismic Catalog for the Iranian Plateau (1900–2011)” by Mohammad P. Shahvar, Mehdi Zare, and Silvia Castellaro. Seismological Research Letters, 85(1), 179–183.Google Scholar
  60. Mohammadi, H., Türker, T., & Bayrak, Y. (2016). A quantitative appraisal of earthquake hazard parameters evaluated from Bayesian approach for different regions in Iranian Plateau. Pure and Applied Geophysics, 173(6), 1971–1991.Google Scholar
  61. Molchan, G. M., Keilis-Borok, V. I., & Vilkovich, G. V. (1970). Seismicity and principal seismic effects. Geophysical Journal International, 21(3), 323–335.Google Scholar
  62. Molkenthin, C., Scherbaum, F., Griewank, A., Leovey, H., Kucherenko, S., & Cotton, F. (2017). Derivative-based global sensitivity analysis: upper bounding of sensitivities in seismic-hazard assessment using automatic differentiation. Bulletin of the Seismological Society of America, 107(2), 984–1004.Google Scholar
  63. Mousavi-Bafrouei, S. H., Mirzaei, N., & Shabani, E. (2015). A declustered earthquake catalog for the Iranian Plateau. Annals of Geophysics, 57(6), 1–25.Google Scholar
  64. Musson, R. M. W. (1999). Determination of design earthquakes in seismic hazard analysis through Monte Carlo simulation. Journal of Earthquake Engineering, 3(04), 463–474.Google Scholar
  65. Musson, R. M. W. (2004). Design earthquakes in the UK. Bulletin of Earthquake Engineering, 2(1), 101–112.Google Scholar
  66. Musson, R. M. W. (2012). PSHA validated by quasi observational means. Seismological Research Letters, 83(1), 130–134.Google Scholar
  67. Nowroozi, A. A. (1976). Seismotectonic provinces of Iran. Bulletin of the Seismological Society of America, 66(4), 1249–1276.Google Scholar
  68. Pisarenko, V. F., & Lyubushin, A. A. (1999). A Bayesian approach to seismic hazard estimation: maximum values of magnitudes and peak ground accelerations. Earthq. Res. in China, 45–57.Google Scholar
  69. Porter, K. A., Beck, J. L., & Shaikhutdinov, R. V. (2002). Sensitivity of building loss estimates to major uncertain variables. Earthquake Spectra, 18(4), 719–743.Google Scholar
  70. Raeesi, M., Zarifi, Z., Nilfouroushan, F., Boroujeni, S. A., & Tiampo, K. (2017). Quantitative analysis of seismicity in Iran. Pure and Applied Geophysics, 174(3), 793–833.Google Scholar
  71. Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479–5495.Google Scholar
  72. Robert, C. P. (2004). Monte Carlo methods. Wiley Online Library.Google Scholar
  73. Rohmer, J., Douglas, J., Bertil, D., Monfort, D., & Sedan, O. (2014). Weighing the importance of model uncertainty against parameter uncertainty in earthquake loss assessments. Soil Dynamics and Earthquake Engineering, 58, 1–9.Google Scholar
  74. Rosenblueth, E. (1986). Use of statistical data in assessing local seismicity. Earthquake Engineering and Structural Dynamics, 14(3), 325–337.Google Scholar
  75. Rosenblueth, E., & Ordaz, M. (1987). Use of seismic data from similar regions. Earthquake Engineering and Structural Dynamics, 15(5), 619–634.Google Scholar
  76. Sabetta, F. (2014). Seismic hazard and design earthquakes for the central archaeological area of Rome. Bulletin of Earthquake Engineering, 12, 1307–1317.Google Scholar
  77. Salamat, M., Zare, M., Holschneider, M., & Zöller, G. (2017). Calculation of confidence intervals for the maximum magnitude of earthquakes in different seismotectonic zones of Iran. Pure and Applied Geophysics, 174(3), 763–777.Google Scholar
  78. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259–270.Google Scholar
  79. Saltelli, A., Chan, K., Scott, E. M., et al. (2000). Sensitivity analysis (Vol. 1). Hoboken: Wiley.Google Scholar
  80. Scherbaum, F., Bommer, J. J., Bungum, H., Cotton, F., & Abrahamson, N. A. (2005). Composite ground motion models and logic trees: methodology, sensitivities and uncertainties. Bulletin of the Seismological Society of America, 95, 1575–1593.Google Scholar
  81. Shahvar, M. P., Zare, M., & Castellaro, S. (2013). A unified seismic catalog for the Iranian plateau (1900–2011). Seismological Research Letters, 84(2), 233–249.Google Scholar
  82. Shahvar, M. P., Zaré, M., & Castellaro, S. (2014). Reply to “Comment on ‘A Unified Seismic Catalog for the Iranian Plateau (1900–2011)’by Mohammad P. Shahvar, Mehdi Zaré, and Silvia Castellaro” by Noorbakhsh Mirzaei, Elham Shabani, and Seyed Hasan Mousavi Bafrouei. Seismological Research Letters, 85(1), 184–185.Google Scholar
  83. Shaw, B. E. (2009). Constant stress drop from small to great earthquakes in magnitude-area scaling. Bulletin of the Seismological Society of America, 99(2A), 871–875.Google Scholar
  84. Shaw, B. E. (2013). Earthquake surface slip-length data is fit by constant stress drop and is useful for seismic hazard analysis. Bulletin of the Seismological Society of America, 103(2A), 876–893.Google Scholar
  85. Sokolov, V., Bonjer, K.-P., & Wenzel, F. (2004). Accounting for site effect in probabilistic assessment of seismic hazard for Romania and Bucharest: A case of deep seismicity in Vrancea zone. Soil Dynamics and Earthquake Engineering, 24(12), 929–947.Google Scholar
  86. Sokolov, V., & Wenzel, F. (2015). On the relation between point-wise and multiple-location probabilistic seismic hazard assessments. Bulletin of Earthquake Engineering, 13(5), 1281–1301.Google Scholar
  87. Sokolov, V., Wenzel, F., & Mohindra, R. (2009). Probabilistic seismic hazard assessment for Romania and sensitivity analysis: A case of joint consideration of intermediate-depth (Vrancea) and shallow (crustal) seismicity. Soil Dynamics and Earthquake Engineering, 29(2), 364–381.Google Scholar
  88. Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N. A., et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70, 59–80.Google Scholar
  89. Stein, R. S., & Hanks, T. C. (1998). M≧ 6 earthquakes in southern California during the twentieth century: No evidence for a seismicity or moment deficit. Bulletin of the Seismological Society of America, 88(3), 635–652.Google Scholar
  90. Stocklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7), 1229–1258.Google Scholar
  91. Takin, M. (1972). Iranian geology and continental drift in the Middle East. Nature, 235, 147–150.Google Scholar
  92. Talebi, M., Zare, M., Peresan, A., & Ansari, A. (2017). Long-term probabilistic forecast for M ≥ 5.0 earthquakes in Iran. Pure and Applied Geophysics, 174(4), 1561–1580.Google Scholar
  93. Tavakoli, B. (1996). Major seismotectonic provinces of Iran. Tehran: International Institute of Earthquake Engineering and Seismology (IIEES).Google Scholar
  94. Tavakoli, B., & Ghafory-Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annals of Geophysics, 42(6), 1013–1021.Google Scholar
  95. Tsapanos, T. M. (2003). Appraisal of seismic hazard parameters for the seismic regions of the east circum-Pacific belt inferred from a Bayesian approach. Natural Hazards, 30(1), 59–78.Google Scholar
  96. Tsapanos, T. M., & Christova, C. V. (2003). Earthquake hazard parameters in Crete island and its surrounding area inferred from Bayes statistics: An integration of morphology of the seismically active structures and seismological data. Pure and Applied Geophysics, 160(8), 1517–1536.Google Scholar
  97. Tsapanos, T. M., Lyubushin, A. A., & Pisarenko, V. F. (2001). Application of a Bayesian approach for estimation of seismic hazard parameters in some regions of the Circum-Pacific Belt. Pure and Applied Geophysics, 158(5–6), 859–875.Google Scholar
  98. Uhrhammer, R. A. (1986). Characteristics of northern and central California seismicity. Earthquake Notes, 57(1), 21.Google Scholar
  99. Vermeulen, P., & Kijko, A. (2017). More statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 65(4), 579–587.Google Scholar
  100. Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bulletin of the Seismological Society of America, 70(4), 1337–1346.Google Scholar
  101. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.Google Scholar
  102. Wheeler, R. L. (2009). Methods of M max estimation east of the Rocky Mountains. US: Geological Survey.Google Scholar
  103. Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698.Google Scholar
  104. Yadav, A. K. (2016). Long-term earthquake forecasting model for northeast India and surrounding region: Seismicity-based model. Natural Hazards, 80(1), 173–190.Google Scholar
  105. Yadav, R. B. S., Tsapanos, T. M., Bayrak, Y., & Koravos, G. C. (2013). Probabilistic appraisal of earthquake hazard parameters deduced from a Bayesian approach in the northwest frontier of the Himalayas. Pure and Applied Geophysics, 170(3), 283–297.Google Scholar
  106. Yazdani, A., & Kowsari, M. (2013). Bayesian estimation of seismic hazards in Iran. Scientia Iranica, 20(3), 422–430.Google Scholar
  107. Zolfaghari, M. R. (2015). Development of a synthetically generated earthquake catalogue towards assessment of probabilistic seismic hazard for Tehran. Natural Hazards, 76(1), 497–514.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Milad Kowsari
    • 1
    Email author
  • Nasrollah Eftekhari
    • 2
  • Andrzej Kijko
    • 3
  • Ehsan Yousefi Dadras
    • 4
  • Hamed Ghazi
    • 5
  • Elham Shabani
    • 6
  1. 1.Earthquake Engineering Research Centre & Faculty of Civil and Environmental Engineering, School of Engineering and Natural Sciences, University of Iceland, Selfoss, Iceland (EERC-UI) & Helmholtz-Zentrum Potsdam, Deutsches GeoForschungs Zentrum (GFZ)PotsdamGermany
  2. 2.Faculty of Technology and MiningYasouj UniversityChoramIran
  3. 3.Natural Hazard CentrePretoria UniversityPretoriaSouth Africa
  4. 4.School of Civil EngineeringIran University of Science and TechnologyTehranIran
  5. 5.Faculty of Civil EngineeringUniversity of TabrizTabrizIran
  6. 6.Department of Seismology, Institute of GeophysicsUniversity of TehranTehranIran

Personalised recommendations