Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1615–1638 | Cite as

Geothermal Energy Reconnaissance of Southeastern Nigeria from Analysis of Aeromagnetic and Gravity Data

  • Ema AbrahamEmail author
  • Onyekachi Itumoh
  • Chibuzo Chukwu
  • Onwe Rock


Given the daunting energy challenges currently bedeviling Nigeria, with demand for electrical power exceeding availability, alternative energy sources (preferentially renewable) are vigorously considered. This is the first study to examine geothermal energy prospects in southeastern Nigeria with the ultimate aim of locating and mapping regions of shallow Curie point depths (CPDs), crustal thickness, and geologic structures supportive of a geothermal system. We estimated CPD using the spectral analysis technique on magnetic field anomalies. Gravity anomalies were subjected to a series of procedures to assess geological structures. Result reveals deeper CPDs within central and southern regions of Okposi, Afikpo and Biase towns in an approximate range of 18.4 to 19.3 km. Shallow CPDs (9.8–17.4 km) have also been obtained within Obubra and Abakaliki regions. Estimated crustal thickness (Moho) ranges between 26.5 and 35.8 km. Part of the region with shallow CPD correlates with regions of shallow Moho depths, particularly in Abakaliki, and deeper Moho depths coincide with deeper CPD estimates at the Afikpo location. The estimated geothermal gradient and heat flow values range between 29.0 and 45.0 ºC and 52.2–101.5 mW/m2, respectively, and fall within values evaluated from deep wells drilled for oil exploration within the adjoining Anambra Basin region. This study recommends the regions with shallow depths for possible geothermal power plant location. Gravity data evaluations also reveal significant subsurface intrusions within Ugbodo, Obubra and Abakaliki locations. Overall, this study is a step forward toward a better evaluation of the geothermal energy resources potential of southeastern Nigeria.


Geothermal aeromagnetic gravity Curie depths heat flow geologic structures 



We appreciate all the reviewers, including editors, for their constructive comments which eventually contributed to improving our manuscript.


  1. Aboud, E., Salem, A., & Mekkawi, M. (2011). Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data. Tectonophysics, 506, 46–54.CrossRefGoogle Scholar
  2. Abraham, E. M., Lawal, K. M., Ekwe, A. C., Alile, O., Murana, K. A., & Lawal, A. A. (2014). Spectral analysis of aeromagnetic data for geothermal energy investigation of Ikogosi Warm Spring—Ekiti State, southwestern Nigeria. Geothermal Energy, 2, 1–21.CrossRefGoogle Scholar
  3. Abraham, E. M., & Nkitnam, E. E. (2017). Review of geothermal energy research in Nigeria: The geoscience front. International Journal of Earth Science and Geophysics, 3, 015.Google Scholar
  4. Abraham, E. M., Obande, E. G., Mbazor, C., Chibuzo, G. C., & Mkpuma, R. O. (2015). Estimating depth to the bottom of magnetic sources at Wikki Warm Spring region, northeast Nigeria using fractal distribution of sources approach. Turkish Journal of Earth Sciences, 24, 1–19.CrossRefGoogle Scholar
  5. Abubakar, M. B. (2014). Petroleum Potentials of the Nigerian Benue Trough and Anambra Basin: A Regional Synthesis. Natural Resources, 5, 25–58.CrossRefGoogle Scholar
  6. Agagu, O. K., & Adighije, C. I. (1983). Tectonic and sedimentary framework of the lower Benue trough, Southeastern Nigeria. Journal of African Earth Sciences, 1(3/4), 267–274.CrossRefGoogle Scholar
  7. Ajakaiye, D. E. (1981). Geophysical investigation in the Benue-Trough. A review; Earth Evolution. Arbitrary shape; In: Computers in the Minerals industries. Part 1 (ed.) Parks G A, Stanford University Publ. Geol. Sci. 9: 464–480.Google Scholar
  8. Ajakaiye, D. E., Daniyan, M. A., Ojo, S. B., & Onuoha, K. M. (1987). The southwestern Nigeria earthquake and its implications for the understanding of the tectonic structure of Nigeria. Journal of Geodynamics, 7, 205–214.CrossRefGoogle Scholar
  9. Ajibade, A. C., & Fitches, W. R. (1988). The Nigerian Precambrian and the Pan-African Orogeny. Precambrian geology of Nigeria (pp. 45–55). Abuja: A publication of the Nigerian Geological Survey Agency.Google Scholar
  10. Avbovbo, A. A. (1978). Geothermal gradients in the Southern Nigerian Basin. Bulletin of Canadian Petroleum Geology, 26(2), 268–274.Google Scholar
  11. Babalola, O. O. (1984). High-Potential geothermal energy resource areas of Nigeria and their geologic and geophysical assessment. AAPG Bulletin, 68(4), 450.Google Scholar
  12. Bansal, A. R., Anand, S. P., Rajaram, M., Rao, V. K., & Dimri, V. P. (2013). Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources. Tectonophysics, 603, 155–161.CrossRefGoogle Scholar
  13. Bansal, A. R., Gabriel, G., Dimri, V. P., & Krawczyk, C. M. (2011). Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics, 76, L11–L22.CrossRefGoogle Scholar
  14. Baranov, V. (1957). A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies. Geophysics, 22, 359–383.CrossRefGoogle Scholar
  15. Benkhelil, J. (1986). Caracteristiques structurales et evolution geodynamique du basin intracontinentale de la Benoue (Nigeria). Thesis d_etat, Nice, p. 275.Google Scholar
  16. Benkhelil, J. (1989). The origin and evolution of the Cretaceous Benue Trough, Nigeria. J Afr Earth Sci, 8, 251–282.CrossRefGoogle Scholar
  17. Bhattacharyya, B. K., & Leu, L. K. (1975). Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics, 40, 993–1013.CrossRefGoogle Scholar
  18. Bhattacharyya, B. K., & Morley, L. W. (1965). The delineation of deep crustal magnetic bodies from total field aeromagnetic anomalies. Journal of Geomagnetism and Geoelectricity, 17, 237–252.CrossRefGoogle Scholar
  19. Bilim, F. (2007). Investigations into the tectonic lineaments and thermal structure of Kutahya-Denizli region, western Anatolia, from using aeromagnetic, gravity and seismological data. Physics of the Earth and Planetary Interiors, 165, 135–146.CrossRefGoogle Scholar
  20. Blakely, R. J. (1988). Curie temperature analysis and tectonic implications of aeromagnetic data from Nevada. Journal of Geophysical Research: Solid Earth, 93, 11817–11832.CrossRefGoogle Scholar
  21. Blakely, R. J. (1995). Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Chukwu, C. G., Udensi, E. E., Abraham, E. M., Ekwe, A. C., & Selemo, A. O. (2018). Geothermal energy potential from analysis of aeromagnetic data of part of the Niger-Delta Basin, Southern Nigeria. Energy, 143, 846–853. Scholar
  23. Cordell, L.& Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Hinze, W. J. (Ed.), The utility of regional gravity and magnetic anomaly maps, Society of Exploration Geophysicists, 181–197.Google Scholar
  24. Burke K., Dessauvagie, T. F. W.& Whiteman, A. J. (1972). Geological history of the Benue Valley and adjacent Areas. In Proceedings of the Conference on African Geology, 7–14 December, 1970, published by Department of Geology, University of Ibadan, Ibadan, Nigeria, pp. 187–205.Google Scholar
  25. Dolmaz, M. N., Ustaomer, T., Hisarli, Z. M., & Orbay, N. (2005). Curie point depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planets Space, 57, 373–383.CrossRefGoogle Scholar
  26. Emujakporue, G. O., & Nwosu, L. I. (2017). Subsurface temperature prediction from multilayer solution of heat flow equation: a case study of Anambra Sedimentary Basin, Nigeria. IOSR Journal of Applied Geology Geophysics, 5(2), 60–67.CrossRefGoogle Scholar
  27. Eppelbaum, L., & Katz, Y. (2015a). Eastern Mediterranean: Combined geologicalegeophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Marine and Petroleum Geology, 65, 1–19.CrossRefGoogle Scholar
  28. Eppelbaum, L., & Katz, Y. (2015b). Newly developed paleomagnetic map of the Easternmost Mediterranean joined with tectono-structural analysis unmask geodynamic history of this region. Open Geosci., 7, 95–117.CrossRefGoogle Scholar
  29. Eppelbaum, L.& Katz, Y. (2017). Satellite gravity transforms unmask tectonic pattern of Arabian—African region. Geophysical Res. Abstracts, 19: EGU2017-2908-1.Google Scholar
  30. Eze, C. L., Sunday, V. N., Ugwu, S. A, Uko, E. D.& Ngah, S. A. (2011). Mechanical model for Nigerian intraplate earth tremors., Earthzine.
  31. Georgsson, L. S. (2009). Geophysical methods used in geothermal exploration. Presented at Short Course IV on Exploration for Geothermal Resources, organized by UNU-GTP, KenGen and GDC, at Lake Naivasha, Kenya, November 1–22.Google Scholar
  32. Gottsmann, J., Camacho, A. G., Martí, J., Wooller, L., Fernández, J., García, A., et al. (2008). Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation. Physics of the Earth and Planetary Interiors, 168, 212–230.CrossRefGoogle Scholar
  33. Hoque, M., & Nwajide, C. S. (1985). Tectono-sedimentological evolution of an elongate intracratonic basin (aulacogen): The case of the Benue Trough of Nigeria. Journal of Mining and Geology, 21, 19–26.Google Scholar
  34. Jain, S. (1988). Total magnetic field reduction—The Pole or Equator? A model study. Canadian Journal of Exploration Geophysics, 24(2), 185–192.Google Scholar
  35. Kogbe, C. A., & Obialo, A. U. (1976). Statistics of mineral production in Nigeria (1946–1974) and the contribution of the mineral industry to the Nigerian economy. In C. A. Kogbe (Ed.), Geology of Nigeria (pp. 391–428). Lagos: Elizabethan Publishers.Google Scholar
  36. Kohrn, B., Bonet, C., DiFrancesco, D., & Gibson, H. (2011). Geothermal exploration using gravity gradiometry—A Salton Sea example. Geothermal Resources Council Transactions Volume 35. GRC Annual Meeting (2011).Google Scholar
  37. Kurowska, E.& Schoeneich, K. (2010). Geothermal exploration in Nigeria, Proceedings of World Geothermal Congress, Bali, Indonesia, 25–29.Google Scholar
  38. Leu, L. K. (1981). Use of reduction-to-the-equator process for magnetic data interpretation: Presented at the 51st Ann. Int. Mtg., Soc. Expl. Geophy., Los Angeles, Abstract P. 12, Geophysics 47, 445.Google Scholar
  39. Li, L., Huang, D., Han, L., & Ma, G. (2014). Optimised edge detection filters in the interpretation of potential field data. Exploration Geophysics, 45, 171–176.CrossRefGoogle Scholar
  40. Loveless, S., Pluymaekers, M., Lagrou, D., De Boever, E., Doomenbal, H., & Laenen, B. (2014). Mapping geothermal potential of fault zones in the Belgium-Netherlands Border region. Energy Procedia, 59, 351–358.CrossRefGoogle Scholar
  41. Maden, N. (2009). Crustal thermal properties of the Central Pontides (Northern Turkey) deduced from spectral analysis of magnetic data. Turkish Journal of Earth Sciences, 18, 1–10.Google Scholar
  42. Manea, M., & Manea, V. C. (2011). Curie point depth estimates and correlation with subduction in Mexico. Pure and Applied Geophysics, 168, 1489. Scholar
  43. Manzella, A. (2009). Geophysical methods in geothermal exploration. Italian National Research Council.
  44. Martakusumah, R., Suryantini, W. S., Pratama, A. B. & Haans, A. (2015). Gravity analysis for hidden geothermal system in Cipanas, Tasikmalaya Regency, West Java. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25.Google Scholar
  45. Mayhew, M. A. (1985). Curie isotherm surfaces inferred from high altitude magnetic anomaly data. Journal of Geophysical Research: Solid Earth, 90(B3), 2647–2654.CrossRefGoogle Scholar
  46. Miller, H. G., & Singh, V. J. (1994). Potential Field tilt—A new concept for location of potential field sources. Applied Geophysics, 32, 213–217.CrossRefGoogle Scholar
  47. Mishra, D. C., Kuma, M. R., & Arora, K. (2012). Long wavelength satellite gravity and geoid anomalies over Himalaya and Tibet: Lithospheric structures and seismotectonics of deep focus earthquakes of Hindu Kush—Pamir and Burmese arc. Journal of Asian Earth Sciences, 48, 93–110.CrossRefGoogle Scholar
  48. Mohammadzadeh-Moghaddam, M., Mirzaei, S., Nouraliee, J., & Porkhial, S. (2016). Integrated magnetic and gravity surveys for geothermal exploration in Central Iran. Arabian Journal of Geosciences, 9, 506.CrossRefGoogle Scholar
  49. Montesinos, F. G., Camacho, A. G., Nunes, J. C., Oliveira, C. S., & Vieira, R. (2003). A 3-D gravity model for a volcanic crater in Terceira Island (Azores). Geophysical Journal International, 154, 393–406.CrossRefGoogle Scholar
  50. Murat, R. C. (1972). Stratigraphy and paleogeography of the Cretaceous and Lower Tertiary in southern Nigeria. In T. F. J. Dessauvagie & A. J. Whiteman (Eds.), African Geology (pp. 251–266). Nigeria: University of Ibadan Press.Google Scholar
  51. Nishijimaa, J., & Naritomi, K. (2017). Interpretation of gravity data to delineate underground structure in the Beppu geothermal field, central Kyushu, Japan. Journal of Hydrology: Regional Studies, 11, 84–95.Google Scholar
  52. Nur, A. (2000). Analysis of aeromagnetic data over the Yola arm of the Upper Benue Trough, Nigeria. Journal of Mining and Geology, 36, 77–84.Google Scholar
  53. Nur, A., Ofoegbu, C. O., & Onuoha, K. M. (1999). Estimation of the depth to the Curie point Isotherm in the upper Benue Trough, Nigeria. Journal of Mining and Geology, 35(1), 53–60.Google Scholar
  54. Nwachukwu, S. O. O. (1975). Geothermal regime of southern Nigeria. GRC Geothermal Library. (Proceedings: Secon UN symposium on the development and use of geothermal resources, 1: 205–212.Google Scholar
  55. Nwachukwu, S. O. (1976). Approximate geothermal gradients in Niger Delta Sedimentary Basin. AAPG Bulletin, 60(7), 1073–1077.Google Scholar
  56. Obaje, N. G. (1994). Coal petrography, microfossils and paleoenvironments of Cretaceous coal measures in the Middle Benue Trough of Nigeria. Tuebinger Mikropalaeontologische Mitteilungen, 11, 1–165.Google Scholar
  57. Obaje, N. G. (2009). Geology and mineral resources of Nigeria. Lecture notes in earth sciences. S. Bhattacharji, Brooklyn, H. J. Neugebauer, Bonn, J. Reitner, G¨ottingen, K. St¨uwe, Graz.Google Scholar
  58. Obande, G. E., Lawal, K. M., & Ahmed, L. A. (2014). Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring, north-east Nigeria. Geothermics, 50, 85–90.CrossRefGoogle Scholar
  59. Obi, D. A., Okereke, C. S., Obei, B. C., & George, A. M. (2010). Aeromagnetic modelling of subsurface intrusives and its implication on hydrocarbon evaluation of the Lower Benue Trough, Nigeria. European Journal of Science and Research, 47, 347–361.Google Scholar
  60. Obi, G. C., Okogbue, C. O., & Nwajide, C. S. (2001). Evolution of the Enugu Cuesta: A tectonically driven erosional process. Global Journal of Pure Applied Sciences, 7, 321–330.CrossRefGoogle Scholar
  61. Obiora, S. C., & Charan, S. N. (2010). Tectonomagmatic origin of some volcanic and sub-volcanic rocks from the Lower Benue rift. Nigeria. Journal African Earth Sciences., 58, 197–210.CrossRefGoogle Scholar
  62. Oboh-Ikuenobe, F. E., Obi, C. G., & Jaramillo, C. A. (2005). Lithofacies, palynofacies, and sequence stratigraphy of Palaeogene strata in Southeastern Nigeria. Journal of African Earth Sciences, 41, 79–101.CrossRefGoogle Scholar
  63. Ofoegbu, C. O. (1984). Interpretation of aeromagnetic anomalies over the Lower and Middle Benue Trough of Nigeria. Geophysical Journal of the Royal Astronomical Society, 79, 813–823.CrossRefGoogle Scholar
  64. Ofoegbu, C. O. (1985). A review of the geology of the Benue Trough of Nigeria. Journal of African Earth Sciences, 3, 283–291.CrossRefGoogle Scholar
  65. Ofoegbu, C. O., & Onuoha, K. M. (1991). Analysis of magnetic data over the Abakaliki Anticlinorium of the lower Benue Trough, Nigeria. Marine and Petroleum Geology, 8(2), 174–183.CrossRefGoogle Scholar
  66. Oha, I. A., Onuoha, K. M., Nwegbu, A. N., & Abba, A. U. (2016). Interpretation of high-resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria. Journal of Earth System Science, 125(2), 369–385.CrossRefGoogle Scholar
  67. Okubo, Y., Graf, R. J., Hansen, R. O., Ogawa, K., & Tsu, H. (1985). Curie point depths of the Island of Kyushu and surrounding areas, Japan. Geophysics, 53(3), 481–494.CrossRefGoogle Scholar
  68. Okubo, Y., & Matsunaga, T. (1994). Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity. Journal of Geophysical Research: Solid Earth, 99, 22363–22371.CrossRefGoogle Scholar
  69. Okubo, Y., Matsushima, J., & Correia, A. (2003). Magnetic spectral analysis in Portugal and its adjacent seas. Physics and Chemistry of the Earth, 28, 511–519.CrossRefGoogle Scholar
  70. Onuoha, K. M., & Ekine, A. S. (1999). Subsurface temperature variation and heat flow in the Anambra Basin, Nigeria. Journal of African Earth Sciences, 28(3), 641–652.CrossRefGoogle Scholar
  71. Osazuwa, I. B., Ajakaiye, D. E., & Verheijen, P. J. T. (1981). Analysis of the structure of part of the Upper Benue Rift Valley on the basis of new geophysical data. Tectonophysics, 2, 126–134.Google Scholar
  72. Petters, S. W. (1982). Central West African Cretaceous-Tertiary benthic foraminifera and stratigraphy. Palaeontographica Abt, 179, 1–104.Google Scholar
  73. Rajaram, M., Anand, S. P., Hemant, K., & Purucker, M. E. (2009). Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data. Earth and Planetary Science Letters, 281, 147–158.CrossRefGoogle Scholar
  74. Represas, P., Santos, F. A., & Ribeiro, J. (2013). Interpretation of gravity data to delineate structural features connected to low-temperature geothermal resources at Northeastern Portugal. Journal of Applied Geophysics, 92, 30–38.CrossRefGoogle Scholar
  75. Riad, S., Refai, E., & Ghalib, M. (1981). Bouguer anomalies and crustal structure in the Eastern Mediterranean. Tectonophysics, 71, 253–266.CrossRefGoogle Scholar
  76. Rivas, J. (2009). Gravity and magnetic methods, short course on surface exploration for geothermal resources. UNU-GTP and LaGeo, in Ahuachapan and Santa Tecla. 1–13.Google Scholar
  77. Ross, H. E., Blakely, R. J., & Zoback, M. D. (2006). Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics, 71(5), L51–L59.CrossRefGoogle Scholar
  78. Salem, A., Furuya, S., Aboud, E., Elawadi, E., Jotaki, H. & Ushijima, K. (2005). Subsurface structural mapping using gravity data of Hohi Geothermal Area, Central Kyushu, Japan. Proceedings World Geothermal Congress, Antalya, Turkey.Google Scholar
  79. Salem, A., Ushijima, K., Elsiraft, A.& Mizunaga, H. (2000). Spectral, analysis of aeromagnetic data for geothermal reconnaissance of,Quseir area, northern Red Sea, Egypt. Proceedings of the world geothermal congress: 1669–1674.Google Scholar
  80. Sandwell, D. T., Garcia, E., Soofi, K., Wessel, P., & Smith, W. H. F. (2013). Towards 1 mGal Global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32(8), 892–899. Scholar
  81. Sandwell, D. T., Muller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67.CrossRefGoogle Scholar
  82. Sandwell, D. T., & Smith, W. H. F. (2009). Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal of Geophysical Research: Solid Earth, 114, B01411. Scholar
  83. Sharma, P. V. (2004). Environmental and engineering geophysics (p. 475). Cambridge: Cambridge University Press.Google Scholar
  84. Short, K. C., & Stauble, A. J. (1967). Outline of geology of Niger delta. American Association of Petroleum Geologists Bulletin, 51, 761–779.Google Scholar
  85. Shuey, R. T., Schellinger, D. K., Tripp, A. C., & Alley, L. B. (1977). Curie depth determination from aeromagnetic spectra. Geophysical Journal International, 50, 75–101.CrossRefGoogle Scholar
  86. Soengkono, S. (2011). Deep interpretation of gravity and airborne magnetic Data over the Central Taupo Volcanic Zone, New Zealand Geothermal Workshop.Google Scholar
  87. Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.CrossRefGoogle Scholar
  88. Stampolidis, A., & Tsokas, G. (2002). Curie point depths of Macedonia and Thrace, N. Greece. Pure and Applied Geophysics, 159, 1–13.CrossRefGoogle Scholar
  89. Tanaka, A., Okubo, Y., & Matsubayashi, O. (1999). Curie-temperature isotherm depth based on spectrum analysis of the magnetic anomaly data in east and southwestern Asia. Tectonophysics, 306, 461–470.CrossRefGoogle Scholar
  90. Thurston, J. B., & Smith, R. S. (1997). Automatic conversion of magnetic data to depth, dip and susceptibility contrast using the SPITM method. Geophysics, 62, 807–813.CrossRefGoogle Scholar
  91. Trifonova, P., Zheler, Z., & Petrova, T. (2006). Curie point depths of the Bulgarian territory inferred from geomagnetic observations. Bulgarian Geophysical Journal, 32, 12–23.Google Scholar
  92. Trifonova, P., Zheler, Z., Petrova, T., & Bojadgieva, K. (2009). Curie point depths of the Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics, 473, 362–374.CrossRefGoogle Scholar
  93. Tsokas, G., Hansen, R. O., & Fyticas, M. (1998). Curie point depth of the Island of Crete (Greece). Pure and Applied Geophysics, 159, 1–13.Google Scholar
  94. Verduzco, B., Fairhead, J. D., Green, C. M., & MacKenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–119.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ema Abraham
    • 1
    Email author
  • Onyekachi Itumoh
    • 1
  • Chibuzo Chukwu
    • 1
  • Onwe Rock
    • 1
  1. 1.Department of Physics/Geology/GeophysicsFederal University Ndufu Alike IkwoAbakalikiNigeria

Personalised recommendations