The 1963 Vajont Landslide: A Numerical Investigation on the Sliding Surface Heterogeneity
- 50 Downloads
Abstract
The 1963 Vajont landslide is a key case in landslide literature, because it was catastrophic and because a lot of accurate data were collected before and after its occurrence. In this paper, the main focus is on the possible heterogeneity of the sliding surface involved by the landslide motion, which is reflected by a heterogeneous distribution of the dynamic basal friction coefficient μ. Assuming a given zonation of the sliding surface, our strategy was to apply a 2D Lagrangian model to compute the landslide motion and to find the values of μ for each zone, leading to the best agreement between the computed and the observed final deposit. Following some hints from the literature, we have explored heterogeneous configurations composed of up to four different zones, including also the homogeneous case, by means of a 2D numerical model (UBO-BLOCK2) that handles the landslide as a mesh of blocks and runs quickly enough to allow the computation of tens of thousands of simulations in a reasonable computing time. It is found that the four-zone zonation produces the best fit (or the least misfit), which is a strong hint that the gliding surface involved different geotechnical units.
Keywords
Vajont landslide Lagrangian approach numerical simulations friction coefficient misfitNotes
Acknowledgements
The authors are indebted to the reviewers, one anonymous and the other Dr. Rachid Omira, who contributed to the improvement and robustness of the manuscript.
References
- Alonso, E. E., & Pinyol, N. M. (2010). Criteria for rapid sliding I. A review of Vaiont case. Engineering Geology, 114(2010), 198–210. https://doi.org/10.1016/j.enggeo.2010.04.018.CrossRefGoogle Scholar
- Argnani, A., Armigliato, A., Pagnoni, G., Zaniboni, F., Tinti, S., Bonazzi, & C. (2012). Active tectonics along the submarine slope of south-eastern Sicily and the source of the 11 January 1693 earthquake and tsunami. Natural Hazards and Earth System Sciences, 12, 1311–1319. http://www.nat-hazards-earth-syst-sci.net/12/1311/2012/, https://doi.org/10.5194/nhess-12-1311-2012.
- Argnani, A., Tinti, S., Zaniboni, F., Pagnoni, G., Armigliato, A., Panetta, D., et al. (2011). The eastern slope of the southern Adriatic basin: a case study of submarine landslide characterization and tsunamigenic potential assessment. Marine Geophysical Researches, 2011(32), 299–311. https://doi.org/10.1007/s11001-011-9131-3.CrossRefGoogle Scholar
- Bistacchi, A., Massironi, M., Superchi, L., Zorzi, L., Francese, R., Giorgi, M., Chistolini, F., & Genevois, R. (2013). A 3d geological model of the 1963 Vajont landslide. Italian Journal of Engineering Geology and Environment Book Series (6), © 2013 Sapienza Università Editrice. https://doi.org/10.4408/ijege.2013-06.b-51.
- Caloi, P. (1966). L’evento del Vajont nei suoi aspetti geodinamici. Annali di Geofisica, XIX, 1–74 (in Italian).Google Scholar
- Carloni, G.C., & Mazzanti, R. (1964). Rilevamento geologico della frana del Vajont. Giornale di Geologia, Annali del Museo Geologico di Bologna, XXXII, 105–123 (in Italian).Google Scholar
- Cecinato, F., Zervos, A., & Veveakis, E. (2011). A thermo-mechanical model for the catastrophic collapse of large landslides. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1507–1535. https://doi.org/10.1002/nag.963.CrossRefGoogle Scholar
- Ciabatti, M. (1964). La dinamica della frana del Vajont. Giornale di Geologia, Annali del Museo Geologico di Bologna, XXXII, 139–153 (in Italian).Google Scholar
- Crosta, G. B., Imposimato, S., & Roddeman, D. (2016). Landslide spreading, impulse water waves and modelling of the Vajont Rockslide. Rock Mechanics and Rock Engineering. https://doi.org/10.1007/s00603-015-0769-z.Google Scholar
- Del Ventisette, C., Gigli, G., Bonini, M., Corti, G., Montanari, D., Santoro, S., et al. (2015). Insights from analogue modelling into the deformation mechanism of the Vaiont landslide. Geomorphology, 228, 52–59. https://doi.org/10.1016/j.geomorph.2014.08.024.CrossRefGoogle Scholar
- Dykes A. P., & Bromhead, E. N. (2018a), The Vaiont landslide: re-assessment of the evidence leads to rejection of the consensus. Landslides. https://doi.org/10.1007/s10346-018-0996-y.
- Dykes A. P., & Bromhead, E.N. (2018b), New, simplified and improved interpretation of the Vaiont landslide mechanics. Landslides. https://doi.org/10.1007/s10346-018-0998-9.
- Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., et al. (2011). Low- to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 116, B09208. https://doi.org/10.1029/2011JB008338.Google Scholar
- Genevois, R., & Ghirotti, M. (2005). The 1963 Vaiont landslide. Giornale di Geologia Applicata, 1, 41–52. https://doi.org/10.1474/GGA.2005-01.0-05.0005.Google Scholar
- Hendron, A. J., & Patton, F.D. (1985). The Vajont slide, a geotechnical analysis based on new geological observations of the failure surface. Technical report GL85-5, US Army Corps of Engineers Waterways Experiment Station, Vicksburg, (2 volumes).Google Scholar
- Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32, 610–623.CrossRefGoogle Scholar
- Hutchinson, J. N. (1986). A sliding-consolidation model for flow slides. Canadian Geotechnical Journal, 23, 663–677.CrossRefGoogle Scholar
- Kilburn, C. R. J., & Petley, D. N. (2003). Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology, 54, 21–32. https://doi.org/10.1016/S0169-555X(03)00052-7.CrossRefGoogle Scholar
- Lo Iacono, C., Gràcia, E., Zaniboni, F., Pagnoni, G., Tinti, S., Bartolomé, R., et al. (2012). Large, deepwater slope failures: Implications for landslide-generated tsunamis. Geology, 40(10), 931–934. https://doi.org/10.1130/G33446.1.CrossRefGoogle Scholar
- Mantovani, F., & Vita-Finzi, C. (2003). Neotectonics of the Vajont dam site. Geomorphology, 54, 33–37. https://doi.org/10.1016/S0169-555X(03)00053-9.CrossRefGoogle Scholar
- Paparo, M. A., Zaniboni, F., & Tinti S. (2013). The Vajont landslide, 9th October 1963: Limit equilibrium model for slope stability analysis through the Minimum Lithostatic Deviation method. Italian Journal of Engineering Geology and Environment Book Series (6), © 2013 Sapienza Università Editrice. https://doi.org/10.4408/ijege.2013-06.b-56.
- Paronuzzi, P., & Bolla, A. (2012). The prehistoric Vajont rockslide: An updated geological model. Geomorphology, 169–170(2012), 165–191. https://doi.org/10.1016/j.geomorph.2012.04.021.CrossRefGoogle Scholar
- Petronio, L., Boaga, J., & Cassiani, G. (2016). Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics. Journal of Applied Geophysics, 128, 58–67. https://doi.org/10.1016/j.jappgeo.2016.03.012.CrossRefGoogle Scholar
- Pinyol, N. M., & Alonso, E. E. (2010). Thermo-hydro-mechanical and scale effects in Vaiont case. Engineering Geology, 114(2010), 211–227. https://doi.org/10.1016/j.enggeo.2010.04.017.CrossRefGoogle Scholar
- Rossi, D., & Semenza, E. (1965). Carte geologiche del versante settentrionale del Monte Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963, scala 1:5000. Istituto di Geologia: Università di Ferrara, Ferrara.Google Scholar
- Selli, R., & Trevisan, L. (1964). Caratteri e interpretazioni della frana del Vajont. Giornale di Geologia, Annali del Museo Geologico di Bologna, XXXII, 7–68 (in Italian).Google Scholar
- Semenza, E., & Ghirotti, M. (2000). History of the 1963 Vajont slide: the importance of geological factors. Bulletin of Engineering Geology and the Environment, 59, 87–97.CrossRefGoogle Scholar
- Sitar, N., MacLaughlin, M. M., & Doolin, D. M. (2005). Influence of kinematics on landslide mobility and failure mode. Journal of Geotechnical and Geoenvironmental Engineering, 131(6), 716–728.CrossRefGoogle Scholar
- Superchi, L. (2012), The Vajont rockslide: new techniques and traditional methods to re-evaluate the catastrophic event. PhD Thesis, Padova University, Italy, pp 215.Google Scholar
- Tika, Th E, & Hutchinson, J. N. (1999). Ring shear tests on soil from the Vajont landslide slip surface. Geotechnique, 49, 59–74.CrossRefGoogle Scholar
- Tinti, S., Bortolucci, E., & Vannini, C. (1997). A block-based theoretical model suited to gravitational sliding. Natural Hazards, 16, 1–28.CrossRefGoogle Scholar
- Tinti, S., Pagnoni, G., & Zaniboni, F. (2006). The landslides and tsunamis of 30th December 2002 in Stromboli analysed through numerical simulations. Bulletin of Volcanology, 68, 462–479.CrossRefGoogle Scholar
- Tinti, S., Pagnoni, G., Zaniboni, F., & Bortolucci, E. (2003). Tsunami generation in Stromboli and impact on the south-east Tyrrhenian coasts. Natural Hazards and Earth Systems Sciences, 3, 299–309.CrossRefGoogle Scholar
- Vardoulakis, I. (2002). Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Geotechnique, 52, 157–171.CrossRefGoogle Scholar
- Ward, S., & Day, S. (2011). The 1963 landslide and flood at Vajont reservoir Italy. A tsunami ball simulation. Italian Journal of Geosciences, 130, 16–26. https://doi.org/10.3301/IJG.2010.21.Google Scholar
- Wolter, A., Stead, D., & Clauge, J. J. (2014). A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphology, 206, 147–164. https://doi.org/10.1016/j.geomorph.2013.10.006-.CrossRefGoogle Scholar
- Wolter, A., Stead, D., Ward, B. C., Clague, J. J., & Ghirotti, M. (2015). Engineering geomorphological characterisation of the Vajont Slide, Italy, and a new interpretation of the chronology and evolution of the landslide. Landslides. https://doi.org/10.1007/s10346-015-0668-0.
- Zaniboni, F., Paparo, M. A., & Tinti, S. (2013). The 1963 Vajont landslide analysed through numerical modeling. Italian Journal of Engineering Geology and Environment Book Series (6), © 2013. Sapienza Università Editrice. https://doi.org/10.4408/ijege.2013-06.b-60.
- Zaniboni, F., & Tinti, S. (2014). Numerical simulations of the 1963 Vajont landslide, Italy: Application of 1D Lagrangian modelling. Natural Hazards, 70, 567–592. https://doi.org/10.1007/s11069-013-0828-2.CrossRefGoogle Scholar
- Zhao, T., Utili, S.,& Crosta, G. B. (2016). Rockslide and impulse wave modelling in the Vajont reservoir by DEM-CFD analyses. Rock Mechanics and Rock Engineering. https://doi.org/10.1007/s00603-015-0731-0.