Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 9, pp 3815–3849 | Cite as

Energy and Magnitude: A Historical Perspective

  • Emile A. OkalEmail author
Article

Abstract

We present a detailed historical review of early attempts to quantify seismic sources through a measure of the energy radiated into seismic waves, in connection with the parallel development of the concept of magnitude. In particular, we explore the derivation of the widely quoted “Gutenberg–Richter energy–magnitude relationship”
$$\begin{aligned} \log _{10} E = 1.5 M_{\mathrm{s}} + 11.8 \end{aligned}$$
(1)
(E in ergs), and especially the origin of the value 1.5 for the slope. By examining all of the relevant papers by Gutenberg and Richter, we note that estimates of this slope kept decreasing for more than 20 years before Gutenberg’s sudden death, and that the value 1.5 was obtained through the complex computation of an estimate of the energy flux above the hypocenter, based on a number of assumptions and models lacking robustness in the context of modern seismological theory. We emphasize that the scaling laws underlying this derivation, as well as previous relations with generally higher values of the slope, suffer violations by several classes of earthquakes, and we stress the significant scientific value of reporting radiated seismic energy independently of seismic moment (or of reporting several types of magnitude), in order to fully document the rich diversity of seismic sources.

Keywords

Radiated seismic energy earthquake magnitudes historical seismicity seismic scaling laws 

Notes

Acknowledgements

I am grateful to Alexandr Rabinovich, Alexei Ivashchenko, and Igor Medvedev for providing copies of critical Russian references, and to the staff of the interlibrary loan desk at Northwestern University for their exceptional professionalism over the years. The paper was significantly improved by the comments of three anonymous reviewers. Discussions with Johannes Schweitzer are also acknowledged.

References

  1. Abrahamson, N. A., & Silva, W. J. (1997). Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismological Research Letters, 68, 94–127.Google Scholar
  2. Aki, K. (1966). Generation and propagation of \(G\) waves from the Niigata earthquake of June 16, 1964 - Part 2. Estimation of moment, released energy, and stress-strain drop from the \(G\)-wave spectrum. Bull. Earthq. Res. Inst. Tokyo Univ., 44, 73–88.Google Scholar
  3. Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 72, 1217–1231.Google Scholar
  4. Ambraseys, N. N., & Adams, R. (1998). The Rhodes earthquake of 26 June 1926. Journal of Seismology, 2, 267–292.Google Scholar
  5. Ambraseys, N. N., & Bilham, R. (2012). The Sarez-Pamir earthquake and landslide of 18 February 1911. Seismological Research Letters, 83, 294–314.Google Scholar
  6. Anderson, D. L., & Archambeau, C. B. (1964). The anelasticity of the Earth. Journal of Geophysical Research, 69, 2071–2084.Google Scholar
  7. Anderson, J. G., & Lei, Y. (1994). Nonparametric description of peak acceleration as a function of magnitude, distance and site in Guerrero, Mexico. Bulletin of the Seismological Society of America, 84, 1003–1017.Google Scholar
  8. Bakum, W. H., & Hopper, M. G. (2004). Magnitudes and locations of the 1811–1812 New Madrid, Missouri and of the 1886 Charleston, South Carolina, earthquakes. Bulletin of the Seismological Society of America, 94, 64–75.Google Scholar
  9. Båth, M. (1955). The relation between magnitude and energy of earthquakes. Proc. Am. Geophys. Union, 36, 861–865.Google Scholar
  10. Båth, M. (1967). Earthquake energy and magnitude. Physics and Chemistry of the Earth, 7, 115–165.Google Scholar
  11. Ben-Menahem, A. (1961). Radiation of seismic surface waves from finite moving sources. Bulletin of the Seismological Society of America, 51, 401–435.Google Scholar
  12. Ben-Menahem, A., & Toksöz, M. N. (1963). Source mechanism from the spectra of long-period seismic surface waves. 2. The Kamchatka earthquake of November 4, 1952. Journal of Geophysical Research, 68, 5207–5222.Google Scholar
  13. Benioff, V. H. (1932). A new vertical seismograph. Bulletin of the Seismological Society of America, 22, 155–169.Google Scholar
  14. Blake, E. S., Kimberlain, T. B., Berg, B. J., Cangialosi, P. J., & Beven II, J. L. (2013). Tropical cyclone report: Hurricane Sandy (AL182012), 157 pp. Miami: Natl. Ocean. Atmos. Admin.Google Scholar
  15. Boatwright, J., & Choy, G. L. (1986). Teleseismic estimates of the energy radiated by shallow earthquakes. Journal of Geophysical Research, 91, 2095–2112.Google Scholar
  16. Bolt, B. A., & Abrahamson, N. A. (2003). Estimation of strong motion ground motions. In W. H. K. Lee, H. Kanamori, P. C. Jennings, & C. Kisslinger (Eds.), International handbook of earthquake and engineering seismology (pp. 983–1001). New York: Academic Press.Google Scholar
  17. Bonelli R., J. M., & Esteban C., L. (1954). La magnitud de los sismos en Toledo, 14 pp. Madrid: Instituto Geografico y Catastral.Google Scholar
  18. Bormann, P., Fujita, K., Mackey, K. G., & Gusev, A. (2012). The Russian \(K\)-class system, its relationships to magnitudes and its potential for future development and application. In P. Bormann (Ed.), New manual of seismological observatory practice 2 (pp. 1–27). Potsdam: Deutsches GeoForschungsZentrum.Google Scholar
  19. Brune, J. N., & Engen, G. R. (1969). Excitation of mantle Love waves and definition of mantle wave magnitude. Bulletin of the Seismological Society of America, 59, 923–933.Google Scholar
  20. Brune, J. N., & King, C.-Y. (1967). Excitation of mantle Rayleigh waves of period 100 s as a function of magnitude. Bulletin of the Seismological Society of America, 57, 1355–1365.Google Scholar
  21. Bullen, K. E. (1953). On strain energy and strength in the Earth’s upper mantle. Proc. Am. Geophys. Union, 34, 107–109.Google Scholar
  22. Bune, V. I. (1955). O klassifikatsii zemletryaseniĭ po energii uprugikh voln, izluchaemykh iz ochaga. Doklady Akad. Nauk Tajik. SSR, 14, 31–34. (in Russian).Google Scholar
  23. Bune, V. I. (1956). Ob ispol’zovanii metoda Golitsyna dlya priblizhennoĭ otsenki energii blizkikh zemletryaseniĭ. Trudy Akad. Nauk Tajik. SSR, 54, 3–27. (in Russian).Google Scholar
  24. Choy, G. L., & Boatwright, J. L. (1995). Global patterns of radiated seismic energy and apparent stress. Journal of Geophysical Research, 100, 18205–18228.Google Scholar
  25. Choy, G. L., McGarr, A., Kirby, S. H., & Boatwright, J. L. (2006). An overview of the global variability in radiated energy and apparent stress. Amer. Geophys. Union Geophys. Monog., 170, 43–57.Google Scholar
  26. Convers, J. A., & Newman, A. V. (2013). Rapid earthquake rupture duration estimates from teleseismic energy rates, with application to real-time warning. Geophysical Research Letters, 40, 1–5.Google Scholar
  27. Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19, 297–301.Google Scholar
  28. Dahlen, F. A. (1977). The balance of energy in earthquake faulting. Geophysical Journal of the Royal astronomical Society, 48, 239–261.Google Scholar
  29. Di Filippo, D., & Marcelli, L. (1950). Magnitudo ed energia dei terremoti in Italia. Annali Geofis., 3, 337–348.Google Scholar
  30. Ekström, G., & Dziewoński, A. M. (1988). Evidence of bias in the estimation of earthquake size. Nature, 332, 319–323.Google Scholar
  31. Elliott, A.J., Parsons, B., Elliott, J.R., & Hollingsworth, J. (2017). 3-D displacements in the 7 December 2015 \(M~=~7.2\) Murghob, Tajikistan earthquake from optical imagery, stereo topography and InSAR, and constraints on the 1911 Sarez event, Eos Transactions American Geophysical Union, 98 (53), T22A-03 (abstract).Google Scholar
  32. Esteva, L., & Rosenblueth, E. (1964). Espectros de temblores moderadas y grandes. Boletin Sociedad Mexicana de Ingenieria Sísmica, 2, 1–18.Google Scholar
  33. Ewing, W. M., & Press, F. (1954). An investigation of mantle Rayleigh waves. Bulletin of the Seismological Society of America, 44, 127–147.Google Scholar
  34. Fedotov, S. A. (1963). The absorption of transverse seismic waves in the upper mantle and energy classification of near earthquakes of intermediate depth, Izv. Akad. Nauk SSSR Geofiz. Ser., 7, 509–520. (in Russian).Google Scholar
  35. Fry, B., Benites, R., & Kaiser, A. (2011). The character of acceleration in the \(M_w~~=~6.2\) Christchurch earthquake. Seismological Research Letters, 82, 846–852.Google Scholar
  36. Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66, 1501–1523.Google Scholar
  37. Gibowicz, S. J., Young, R. P., Talebi, S., & Rawlence, D. J. (1991). Source parameters of seismic events at the underground research laboratory in Manitoba, Canada: scaling relations for events with moment magnitude smaller than 2. Bulletin of the Seismological Society of America, 81, 1157–1182.Google Scholar
  38. Golitsyn, B. B. (1915). Sur le tremblement de terre du 18 février 1911. Comptes Rendus Acad. Sci. Paris, 160, 810–814.Google Scholar
  39. Gutenberg, B. (1945a). Amplitudes of surface waves and magnitudes of shallow earthquakes. Bulletin of the Seismological Society of America, 35, 3–12.Google Scholar
  40. Gutenberg, B. (1945b). Amplitudes of \(P\), \(PP\), and \(S\) and magnitude of shallow earthquakes. Bulletin of the Seismological Society of America, 35, 57–69.Google Scholar
  41. Gutenberg, B. (1945c). Magnitude determination for deep-focus earthquakes. Bulletin of the Seismological Society of America, 35, 117–130.Google Scholar
  42. Gutenberg, B. (1956). On the energy of earthquakes, Q. J. Geol. Soc. (London), 112, 1–14.Google Scholar
  43. Gutenberg, B. (1958). Wave velocities in the earth’s core. Bulletin of the Seismological Society of America, 48, 301–314.Google Scholar
  44. Gutenberg, B., & Richter, C. F. (1936). On seismic waves (Third paper), Gerlands Beitr. z. Geophys., 47, 73–131.Google Scholar
  45. Gutenberg, B., & Richter, C.F. (1941). Seismicity of the Earth, Geological Society of America Special Paper, 34, 125 pp.Google Scholar
  46. Gutenberg, B., & Richter, C. F. (1942). Earthquake magnitude, intensity, energy and acceleration. Bulletin of the Seismological Society of America, 32, 163–191.Google Scholar
  47. Gutenberg, B., & Richter, C. F. (1949). Seismicity of the Earth and associated phenomena, 273 pp. Princeton University Press.Google Scholar
  48. Gutenberg, B., & Richter, C. F. (1954). Seismicity of the Earth and associated phenomena, 310 pp. Princeton University Press.Google Scholar
  49. Gutenberg, B., & Richter, C. F. (1956a). Earthquake magnitude, intensity, energy and acceleration (second paper). Bulletin of the Seismological Society of America, 46, 105–145.Google Scholar
  50. Gutenberg, B., & Richter, C. F. (1956b). Magnitude and energy of earthquakes. Annali di Geofisica, 9, 1–15.Google Scholar
  51. Hamburger, M., Kopnichev, Y., Levshin, A., Martynov, V., Mikhailova, N., Molnar, P., et al. (2007). In memoriam: Vitaly Ivanovich Khalturin (1927–2007). Seismol. Res. Lett., 78, 577–578.Google Scholar
  52. Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350.Google Scholar
  53. Haskell, N. A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.Google Scholar
  54. Haskell, N. A. (1966). Total energy and energy spectral density of elastic wave radiation from propagating faults, Part II: a statistical source model. Bulletin of the Seismological Society of America, 56, 125–140.Google Scholar
  55. Herrin, E. (1968). 1968 seismological tables for \(P\) phases. Bulletin of the Seismological Society of America, 58, 1193–1239.Google Scholar
  56. Holden, C. (2011). Kinematic source model of the 22 February 2011 \(M_w~~=~6.2\) Christchurch earthquake using strong motion data. Seismological Research Letters, 82, 783–788.Google Scholar
  57. Housner, G. W. (1965). Intensity of earthquake ground shaking near the causative fault. In Proc. 3rd World Conf. Earthq. Eng., Auckland (pp. 94–115).Google Scholar
  58. Hutt, C. R., Bolton, H. F., & Holcomb, L. G. (2002). US contribution to digital global seismograph network. In W. H. K. Lee, H. Kanamori, P. Jennings, & C. Kisslinger (Eds.), International handbook of earthquake and engineering seismology (pp. 319–332). New York: Academic.Google Scholar
  59. Ide, S., & Beroza, G. C. (2001). Does apparent stress vary with earthquake size? Geophysical Research Letters, 28, 3349–3352.Google Scholar
  60. Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2007). Teleseismic \(P\)-wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array. Journal of Geophysical Research, 112(B11), B11307, 16 pp.Google Scholar
  61. Jeffreys, H. (1923). The pamir earthquake of 1911 February 18, in relation to the depths of earthquake foci. Monthly Notices of the Royal astronomical Society, Geophysical Supplement, 1, 22–31.Google Scholar
  62. Jeffreys, H. (1929). The Earth, its origin, history and physical constitution (2nd ed.), 346 pp. Cambridge: Cambridge University Press.Google Scholar
  63. Johnston, A. C. (1996). Seismic moment assessment of earthquakes in stable continental regions—III. New Madrid 1811–1812, Charleston, 1886, and Lisbon 1755. Geophysical Journal International, 126, 314–344.Google Scholar
  64. Julian, B. R., & Anderson, D. L. (1968). Travel times, apparent velocities and amplitudes of body waves. Bulletin of the Seismological Society of America, 58, 339–366.Google Scholar
  65. Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6, 346–359.Google Scholar
  66. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2987.Google Scholar
  67. Kanamori, H. (1983). Magnitude scale and quantification of earthquakes. Tectonophysics, 93, 185–199.Google Scholar
  68. Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65, 1073–1095.Google Scholar
  69. Kárník, V., Kondorskaya, N. V., Riznitchenko, Ju V, Savarensky, E. F., Soloviev, S. L., Shebalin, N. V., et al. (1962). Standardization of the earthquake magnitude scale. Studia Geophysica et Geodetica, 6, 41–48.Google Scholar
  70. Kim, W.-Y., Sykes, L. R., Armitage, J. H., Xie, J. K., Jacob, K. H., Richards, P. G., et al. (2001). Seismic waves generated by aircraft impacts and building collapses at World Trade Center, New York City. Eos, Transactions of the American Geophysical Union, 82(47), 565, 570–571.Google Scholar
  71. Kimberlain, T. B., Blake, E. S., & Cangialosi, J. P. (2016). National Hurricane Center Tropical Cyclone Report, Hurricane Patricia (EP202015), 10 pp., Miami: Natl. Ocean. Atmos. Admin.Google Scholar
  72. Klotz, O. (1915). The earthquake of February 18, 1911: a discussion of this earthquake by Prince Galitzin, with comments thereon. Journal of the Royal Astronomical Society of Canada, 9, 428–437.Google Scholar
  73. Knopoff, L., & Gilbert, J. F. (1959). Radiation from a strike-slip earthquake. Bulletin of the Seismological Society of America, 49, 163–178.Google Scholar
  74. Lamb, H. (1916). On waves due to a travelling disturbance, Philosophical Magazine, 13, 386–399 and 539–548.Google Scholar
  75. Lay, T., Ammon, C. J., Kanamori, H., Xue, L., & Kim, M. (2011). Possible large near-trench slip during the 2011 \(M_w = 9.0\) off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63, 687–692.Google Scholar
  76. Lee, W. H. K., & Stewart, S. W. (1981). Principles and applications of microearthquakes networks (pp. 155–157). New York: Academic.Google Scholar
  77. Lim, V. V., Akdodov, U., & Vinnichenko, S. (1997). Sarez Lake is a threatening dragon of central Asia, 54 pp., Geol. Manag. Gov. Rep., Dushanbe, TajikistanGoogle Scholar
  78. López, A. M., & Okal, E. A. (2006). A seismological reassessment of the source of the 1946 Aleutian “tsunami” earthquake. Geophysical Journal International, 165, 835–849.Google Scholar
  79. Macelwane, J. B. (1926). Are important earthquakes ever caused by impact? Bulletin of the Seismological Society of America, 16, 15–18.Google Scholar
  80. Mansinha, L., & Smylie, D. E. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61, 1433–1440.Google Scholar
  81. Mayeda, K., Gök, R., Walter, W.R. & Hofstetter, A. (2005). Evidence for non-constant energy/moment scaling from coda-derived source spectra, Geophysical Research Letters, 32(10), L10306, 4 pp.Google Scholar
  82. McGarr, A. (1999). On relating apparent stress to the stress causing earthquake fault slip. Journal of Geophysical Research, 104, 3003–3011.Google Scholar
  83. Mendenhall., T.C., (1888). On the intensity of earthquakes, with approximate calculations of the energy involved, 8 pp., Am. Assoc. Adv. Sci.: Proc.Google Scholar
  84. Miles, M. G., Grainger, R. G., & Highwood, E. J. (2004). Volcanic aerosols: the significance of volcanic eruption strength and frequency for climate. Journal of the Royal Meteorological Society, 130, 2361–2376.Google Scholar
  85. Milne, J. (1898). Seismology, 320 pp., London: K. Paul Trench, Trübner & Co.Google Scholar
  86. Musson, R. (2007). British earthquakes. Proceedings of the Geologists’ Association, 118, 305–337.Google Scholar
  87. Nagamune, T., & Seki, A. (1958). Determination of earthquake magnitude from surface waves for Matsushiro seismological observatory and the relation between magnitude and energy. Geophys. Mag., 28, 303–308.Google Scholar
  88. Negmatullayev, S.Kh., Ulubiyeva, T.R., & Djuraev, R.U. (2018). Sarezskoye earthquake of December 7, 2015, Proc. Xth Intl. Conf. Monitoring Nuclear Tests and Their Consequences, Almaty, Kazakhstan [abstract].Google Scholar
  89. Newhall, C. G., & Self, S. (1982). The volcanic explosivity index (VEI). Journal of Geophysical Research, 87, 1231–1238.Google Scholar
  90. Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The \( E/M_0 \) discriminant for tsunami earthquakes. Journal of Geophysical Research: 103, 26885–26898.Google Scholar
  91. Newton, I. S. (1687). Philosophiæ naturalis principia mathematica. London: Pepys.Google Scholar
  92. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1134–1154.Google Scholar
  93. Okal, E. A. (1989). A theoretical discussion of time-domain magnitudes: the Prague formula for \(M_s\) and the mantle magnitude \(M_m\). Journal of Geophysical Research, 94, 4194–4204.Google Scholar
  94. Okal, E. A. (1992). Use of the mantle magnitude \(M_m\) for the reassessment of the seismic moment of historical earthquakes. I: Shallow events. Pure Appl. Geophys., 139, 17–57.Google Scholar
  95. Okal, E. A. (2003). Normal modes energetics for far-field tsunamis generated by dislocations and landslides. Pure and Applied Geophysics, 160, 2189–2221.Google Scholar
  96. Okal, E. A. (2013). From 3-Hz \(P\) waves to \({}_0 S_2\): No evidence of a slow component to the source of the 2011 Tohoku earthquake. Pure and Applied Geophysics, 170, 963–973.Google Scholar
  97. Okal, E. A., & Kirby, S. H. (2002). Energy-to-moment ratios for damaging intraslab earthquakes: Preliminary results on a few case studies. USGS Open File Rep., 02-328 (pp. 127–131).Google Scholar
  98. Okal, E. A., & Newman, A. V. (2001). Tsunami earthquakes: the quest for a regional signal. Physics of the Earth and Planetary Interiors, 124, 45–70.Google Scholar
  99. Okal, E. A., & Talandier, J. (1989). \(M_m \): A variable period mantle magnitude. Journal of Geophysical Research, 94, 4169–4193.Google Scholar
  100. Okal, E. A., & Talandier, J. (1990). \(M_m\): Extension to Love waves of the concept of a variable-period mantle magnitude. Pure and Applied Geophysics, 134, 355–384.Google Scholar
  101. Okal, E. A., Kirby, S. H., & Kalligeris, N. (2016). The Showa Sanriku earthquake of 1933 March 2: a global seismological reassessment. Geophysical Journal International, 206, 1492–1514.Google Scholar
  102. Oldham, R. D. (1923). The Pamir earthquake of 18th February 1911. Quarterly Journal of the Geological Society London, 79, 237–245.Google Scholar
  103. Prieto, G.A., Shearer, P.M., Vernon, F.L. & Kilb, D. (2004). Earthquake source scaling and self-similarity estimation from stacking \(P\) and \(S\) spectra, Journal of Geophysical Research, 109(B08), B08310, 13 pp.Google Scholar
  104. Polet, J., & Kanamori, H. (2000). Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International, 142, 684–702.Google Scholar
  105. Radulian, M., & Popa, M. (1996). Scaling of source parameters for Vrancea (Romania) intermediate-depth earthquakes. Tectonophysics, 261, 67–81.Google Scholar
  106. Rautian, T. G. (1960). The energy of earthquakes. In Y. V. Riznichenko (Ed.), Methods for the detailed study of seismicity (pp. 75–114). Moscow: Izd. Akad. Nauk SSSR.Google Scholar
  107. Rautian, T. G., Khalturin, M. I., Fujita, K., Mackey, K. G., & Kendall, A. D. (2007). Origins and methodology of the Russian K-class system and its relationship to magnitude scales. Seismological Research Letters, 78, 579–590.Google Scholar
  108. Reid, H. F. (1910). The California earthquake of April 18, 1906, Rept. State Earthq. Invest. Comm (Vol. II), 192 pp., Washington: Carnegie Inst. Wash.Google Scholar
  109. Reid, H. F. (1912). The energy of earthquakes. In R. de Kövesligethy (Ed.), C.R. Séances 4ème Conf. Commis. Perm. et 2ème Assemb. Gén. Assoc. Intern. Sismologie, Manchester, 18-21 juil. 1911 (pp. 268–272). Budapest: Hornyánszky.Google Scholar
  110. Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25, 1–32.Google Scholar
  111. Richter, C. F. (1958). Elementary seismology, 768 pp. San Francisco: W.H. Freeman.Google Scholar
  112. Richter, C. F. (1962). Memorial to Beno Gutenberg (1889–1960), Geol. Soc. Am. Proc. Vol. Annu. Rep., 1960, 93–104.Google Scholar
  113. Richter, C. F., & Nordquist, J. M. (1948). Minimal recorded earthquakes. Bulletin of the Seismological Society of America, 38, 257–261.Google Scholar
  114. Sagisaka, K. (1954). On the energy of earthquakes. Geophys. Mag., 26, 53–82.Google Scholar
  115. Satô, Y. (1958). Attenuation, dispersion, and the wave guide of the \(G\) wave. Bulletin of the Seismological Society of America, 48, 231–251.Google Scholar
  116. Shpil’ko, G. A. (1914). Zemletryasenie 1991 goda na Pamirakh i evo posliedstviya. Izv. Imperat. Russ. Geograf. Obshchestva, 50, 69–94. (in Russian).Google Scholar
  117. Shpil’ko, G.A. (1915). Noviya sviedieniya ob Usoyskom zavalye i Sarezskom ozerye, Izv. Turkestans. Otdiel’a Imperat. Russ. Geograf. Obshchestva, 11, Tashkent, 2 pp. (in Russian).Google Scholar
  118. Schuster, R. L., & Alford, D. (2004). Usoi landslide dam and Lake Sarez, Pamir Mountains, Tajikistan. Environmental & Engineering Geoscience, 10, 151–168.Google Scholar
  119. Solov’ev, S. L., & Solov’eva, O. N. (1967). The relationship between the energy class and magnitude of Kuril earthquakes. Bull. Acad. Sci. USSR Earth Sci. Ser., 3, 79–84.Google Scholar
  120. Sonley, E., & Abercrombie, R. E. (2006). Effects of methods of attenuation correction on source parameter determination. Geophysical Monograph-American Geophysical Union, 170, 91–97.Google Scholar
  121. Tanioka, Y., Ruff, L., & Satake, K. (1997). What controls the lateral variation of large earthquake occurrence along the Japan Trench? Island Arc, 6, 261–266.Google Scholar
  122. Thomson, W. (1855). Note on the possible density of the luminiferous medium, and the mechanical value of a cubic mile of sunlight. Phil. Mag., 9, 36–40.Google Scholar
  123. Trifunac, M. D., & Brady, G. (1975). A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65, 581–626.Google Scholar
  124. Vaněk, J., Zátopek, A., Kárník, V., Kondorskaya, N. V., Riznichenko, Yu V, Savarenskiĭ, E. F., et al. (1962). Standardizatsya shkaly magnitud. Izv. Akad. Nauk SSSR, Ser. Geofiz, 2, 153–158. (in Russian; English translation. Bull. USSR Acad. Sci., 2, 108–111).Google Scholar
  125. Vanmarcke, E. H., & Lai, S.-S. P. (1980). Strong-motion duration and RMS amplitude of earthquake records. Bulletin of the Seismological Society of America, 70, 1293–1307.Google Scholar
  126. Vassiliou, M. S., & Kanamori, H. (1982). The energy release in earthquakes. Bulletin of the Seismological Society of America, 72, 371–387.Google Scholar
  127. Veith, K. F., & Clawson, G. E. (1972). Magnitude from short-period \(P\)-wave data. Bulletin of the Seismological Society of America, 62, 435–462.Google Scholar
  128. Venkataraman, A., & Kanamori, H. (2004). Effect of directivity on estimates of radiated seismic energy, Journal of Geophysical Research, 109 (B4), B04301, 12 pp.Google Scholar
  129. Vvedenskaya, A. V. (1956). Opredelenie poleĭ smeshcheniĭ pri zemletryaseniyakh s pomoshchyu teoriĭ dislokatsiĭ, Izv. Akad. Nauk SSSR. Ser. Geofiz., 6, 277–284. (in Russian).Google Scholar
  130. Wald, D. J., Kanamori, H., Helmberger, D. V., & Heaton, T. H. (1993). Source study of the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 83, 981–1019.Google Scholar
  131. Walter, W. R., Mayeda, K., Gök, R., & Hofstetter, A. (2006). The scaling of seismic energy with moment: Simple models compared with observations. American Geophysical Union Geophysical Monograph, 170, 25–41.Google Scholar
  132. Weinstein, S. A., & Okal, E. A. (2005). The mantle wave magnitude \(M_m\) and the slowness parameter \(\Theta \): Five years of real-time use in the context of tsunami warning. Bull. Seismol. Soc. Am., 95, 779–799.Google Scholar
  133. Wrinch, D., & Jeffreys, H. (1923). On the seismic waves from the Oppau explosion of 1921 September 21. Month. Not. R. Astron. Soc. Geophys. Suppl., 1, 16–22.Google Scholar
  134. Wu, F.T. (1966). Lower limit of the total energy of earthquakes and partitioning of energy among seismic waves, Ph.D. Dissertation, Part I, Pasadena: California Institute of Technology, 161 pp.Google Scholar
  135. Ye, L., Lay, T., Kanamori, H., & Rivera, L. (2016). Rupture characteristics of major and great (\(M_w~\ge ~7.0\)) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. Journal of Geophysical Research, 121, 826–844.Google Scholar
  136. Zöppritz, K., Geiger, L., & Gutenberg, B. (1912). Über Erdbenbenwellen. V, Nachr. k. Gess. d. Wiss. z. Göttingen, math.-phys. Kl., 121-206.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations