Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 1, pp 45–64 | Cite as

Source Parameters and Scaling Relations for Moderate Size Earthquakes in North–East India Region

  • Vikas KumarEmail author
  • Dinesh Kumar
  • Sumer Chopra
Article
  • 51 Downloads

Abstract

The present study estimates source parameters and proposes scaling relationships for moderate size earthquakes (mb 3.7–5.8) in seismically active North–East India region. The study is based upon the spectral analysis of high-quality waveforms comprising of P- and S-waves obtained from strong ground motion (SMA) records of 50 earthquakes that has occurred in the region. A two-step procedure is adopted to estimate the earthquake source parameters. It has been observed that the average seismic moment and source radii vary from 1.05 × 1015 to 1.99 × 1017 N-m and 500 to 2000 m, respectively. The average corner frequency ratio [fC(P)/fC(S)] of P-wave and S-wave is found to be 1.2, which shows the shift in the corner frequency. The total estimated energy varies between 9.22 × 1010 and 1.42 × 1014 J, while the average stress drop varies from 1.8 to 29.4 MPa. One of the major outcome of this study is that the stress drop does not vary significantly with the magnitude and self-similarity exist among the earthquakes in North–East India region. The scaling relation between the seismic moment and the corner frequency is \( M_{\text{o}} f_{\text{c}}^{ 3} = 1.35\; \times \; 10^{17} N{\text{ - ms}}^{ - 3} \). The median stress drop value for NE India region is found to be about 9.2 MPa. The earthquake source parameters and the scaling relations developed in this study will be useful for carrying scenario based seismic hazard analysis studies in the NE India region.

Keywords

Source parameters corner frequency stress drop radiated seismic energy scaling relations 

Notes

Acknowledgements

The authors are thankful to their respective organization for their support and encouragement to do this study. VK thanks Dr. V.K. Gahalaut, Director, National Center for Seismology(NCS), Ministry of Earth Sciences, New Delhi, India and all NCS scientific and technical staff for their constant support and provide facilities to complete this work. The authors are grateful to the two anonymous reviewers whose constructive and critical review have been used for the significant improvement in the paper.

References

  1. Abercrombie, R. E. (1995). Earthquake source scaling relationships from − 1 to 5 ML using seismograms recorded at 2.5 km depth. Journal of Geophysical Research, 100, 24015–24036.CrossRefGoogle Scholar
  2. Abercrombie, R. E., & Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162, 406–424.CrossRefGoogle Scholar
  3. Allmann, B. P., & Shearer, P. M. (2007). Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. Journal of Geophysical Research, 112(B04305), 1–17.Google Scholar
  4. Andrews, D. J. (1986). Objective determination of source parameters and similarity of earthquakes at different size, In: Das S, Boatwright J, Scholz C. H. (eds) Earthquake source mechanics. Proceedings of the 5th Maurice Ewing Symposium, American Geophysical Union, Washington, pp 259–267.Google Scholar
  5. Archuleta, R. J., Cranswick, E., Muller, C., & Spudich, P. (1982). Source parameters of the 1980 Mammoth Lakes, California, earthquake sequence. Journal of Geophysical Research, 87, 4595–4607.CrossRefGoogle Scholar
  6. Bilham, R., & England, P. (2001). Plateau pop-up during the 1897 Assam earthquake. Nature (Lond), 410, 806–809.CrossRefGoogle Scholar
  7. Bora, D. K., Saurabh, B., Biswas, R., & Gogoi, N. K. (2013). Estimation of source parameters of local earthquakes originated in Shillong-Mikir Plateau and its Adjoining Region of Northeastern India. Bulletin of the Seismological Society of America, 103(1), 437–446.  https://doi.org/10.1785/0120120095.CrossRefGoogle Scholar
  8. Brune, J. N. (1970). Tectonic stress and spectra of shear waves from earthquakes. Journal Geophysical Research, 75, 4997–5009.CrossRefGoogle Scholar
  9. Brune, J. N. (1971). Correction. Journal Geophysical Research, 76, 5002.CrossRefGoogle Scholar
  10. Brune, J. N., Fletcher, J., Vemon, F., Haar, L., Hanks, T., &Berger, J. (1986). Low stress-drop earthquakes in the light of new data from Anza, California telemetered digital array. In: Das, S., Boatwright J., Scholz C. H. (eds) Earthquake source mechanics. Proceedings of the 5th Maurice Ewing symposium, American Geophysical Union, Washington, pp 237–245.Google Scholar
  11. Brunnschweiler, R. O. (1966). On the geology of Indo-Burman Ranges (Arakan coast and Yoma, Chin Hills, Naga Hills). Journal of the Geological Society of Australia, 13(1), 137–194.CrossRefGoogle Scholar
  12. Choy, G. L., & Boatwright, J. L. (1995). Global patterns of radiated seismic energy and apparent stress. Journal Geophysical Research, 100, 18205–18228.CrossRefGoogle Scholar
  13. Dasgupta, S., & Nandy, D. R. (1982). Seismicity and tectonics of Meghalaya plateau, N.E. India. In: Seventh symposium on Earthquake Engineering. University of Roorkee. p. 19–24.Google Scholar
  14. Dysart, P. S., Snoke, J. A., & Sacks, I. S. (1988). Source parameters and scaling relations for small earthquakes in the Matsushiro region, Southwest Honshu, Japan. Bulletin of the Seismological Society of America, 78, 571–589.Google Scholar
  15. Evans, P. (1964). The tectonic framework of Assam. Geological Society of India, 5, 80–96.Google Scholar
  16. Fletcher, J. B. (1980). Spectra from high dynamic range digital recordings of Oroville, California aftershocks and their source parameters. Bulletin of Seismological Society of America, 70, 735–755.Google Scholar
  17. Fletcher, J. B., & Boatwright, J. (1991). Source parameters of Loma Prieta aftershocks and wave propagation characteristics along the San Francisco Peninsula from a joint inversion of digital seismograms. Bulletin of the Seismological Society of America, 81, 1783–1812.Google Scholar
  18. Frankel, A. (1981). Source parameters and scaling relationships of small earthquakes in the northeastern Caribbean. Bulletin of the Seismological Society of America, 71, 1173–1190.Google Scholar
  19. García, J. M. G., Romacho, M. D., & Jiménez, A. (2004). Determination of near surface attenuation, with κ parameter, to obtain the seismic moment, stress drop, source dimension and seismic energy for micro earthquakes in the Granada basin (Southern Spain). Physics of the Earth and Planetary Interiors, 141, 9–26.CrossRefGoogle Scholar
  20. Gök, R., Hutchings, L., Mayeda, K., & Kalafat, D. (2009). Source Parameters of 1999 North Anatolian Fault Zone Aftershocks. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-009-0461-x.Google Scholar
  21. Haar, L. C., Fletcher, J. B., & Mueller, C. S. (1984). The 1982 Enola, Arkansas, swarm and scaling of ground motion in the eastern United States. Bulletin of the Seismological Society of America, 74, 2463–2482.Google Scholar
  22. Hanks, T. C. (1981). The corner frequency shift, earthquake source models and Q. Bulletin of Seismological Society of America, 71, 597–612.Google Scholar
  23. Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350.CrossRefGoogle Scholar
  24. Haskell, N. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.Google Scholar
  25. Herrmann, R. B., & Kijko, A. (1983). Modelling some empirical vertical component Lg relations. Bulletin of Seismological Society of America, 73, 157–171.Google Scholar
  26. Hiramatsu, Y., Yamanaka, H., Tadokoro, K., Nishigami, K., & Ohmi, S. (2002). Scaling law between corner frequency and seismic moment of microearthquakes: Is the breakdown of the cube law a nature of earthquakes? Geophysical Research Letters.  https://doi.org/10.1029/2001GL013894.Google Scholar
  27. Ide, S., Beroza, G. C., Prejean, S., & Ellsworth, W. (2003). Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. Journal of Geophysical Research, 108, 2271.  https://doi.org/10.1029/2001JB001617.CrossRefGoogle Scholar
  28. Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of Seismological Society of America, 65, 1073–1095.Google Scholar
  29. Kanamori, H. and Rivera, L. (2013). Energy partitioning during an earthquake. Earthquakes: Radiated energy and the physics of faulting, Washington DCAGU (pp. 3–13), 170 of Geophys. Monogr. Ser.Google Scholar
  30. Kayal, J. R. (1996). Earthquake source processes in northeast India: a review. Journal of Himalayan Geology, 17, 53–69.Google Scholar
  31. Kayal, J. R., De, R., & Chakraborty, P. (1993). Microearthquakes at the Main Boundary Thrust in eastern Himalaya and the present day tectonic model. Tectonophysics, 218, 375–381.CrossRefGoogle Scholar
  32. Kayal, J. R., & Zhao, Dapeng. (1998). Three-dimensional seismic structure beneath Shillong Plateau and Assam Valley, Northeast India. Bulletin of Seismological Society of America, 88, 667–676.Google Scholar
  33. Keilis-Borok, V. I. (1960). Investigating of the mechanism of earthquakes. Sov. Res. Geophys. (English translation), American Geophysical Union Consultants Bureau, New York, 4:201.Google Scholar
  34. Khattri, K. N. (1987). Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectonophysics, 138, 79–92.CrossRefGoogle Scholar
  35. Kjartansson, E. (1979). Constant Q-wave propagation and attenuation. Journal of Geophysical Research, 84, 4737–4748.CrossRefGoogle Scholar
  36. Kumar, V., Kumar, D., & Chopra, S. (2016). Estimation of source parameters and scaling relations for moderate size earthquakes in North-West Himalaya. Journal of Asian Earth Sciences.  https://doi.org/10.1016/j.jseaes.2016.07.023.Google Scholar
  37. Kumar, A., Kumar, A., Gupta, S. C., Mittal, H., & Kumar, R. (2013). Source parameters and fmax in Kameng region of Arunachal Lesser Himalaya. Journal of Asian Earth Sciences.  https://doi.org/10.1016/j.jseaes.2013.02.030.Google Scholar
  38. Kumar, S., Kumar, D., & Rastogi, B. K. (2014). Source parameters and scaling relations of small earthquakes in the Kachchh region of Gujarat, India. Natural Hazard, 73, 1269–1289.CrossRefGoogle Scholar
  39. Kumar, D., Sarkar, I., Sriram, V., & Khattri, K. N. (2005). Estimation of source parameters of the Himalaya earthquake of October 19 1991, average effective shear wave attenuation parameter and local site effects from accelerograms. Tectonophysics, 407, 1–24.CrossRefGoogle Scholar
  40. Kumar, M. Ravi, Solomon Raju, P., Uma Devi, E., Saul, J., & Ramesh, D. S. (2004). Crustal structure variations in northeast India from converted phases. Geophysical Research Letters, 31, L17605.  https://doi.org/10.1029/2004GL020576.Google Scholar
  41. Kumar, D., Sriram, V., & Khattri, K. N. (2006). A study of source parameters, site amplification functions and average effective shear wave quality factor Qseff from analysis of accelerograms of 1999Chamoli earthquake, Himalaya. Pure and Applied Geophysics, 163, 1369–1398.CrossRefGoogle Scholar
  42. Kumar, D., Sriram, V., Sarkar, I., & Teotia, S. S. (2008). An estimate of a scaling law of seismic spectrum for earthquakes in Himalaya. Indian Minerals 61(3–4) & 62 (1–4): 83–92.Google Scholar
  43. Madariaga, R. (2009) Seismic source theory. In: Earthquake seismology: treatise on geophysics (Editor-in-Chief Prof. G Schubert, Vol Editor: Dr. H Kanamori), 4, 59–82.Google Scholar
  44. Madariaga, R. (2009b). Earthquake Scaling Laws. In R. Meyers (Ed.), Encyclopedia of complexity and systems science (pp. 2581–2599). New York: Springer.CrossRefGoogle Scholar
  45. Majer, E. L., & McEvilly, T. V. (1979). Seismological investigations in the Geysers geothermal field. Geophysics, 44, 246–269.CrossRefGoogle Scholar
  46. Mandal, P., & Johnston, A. (2006). Estimation of source parameters for the aftershocks of the 2001 M w 7.7 Bhuj Earthquake, India. Pure and Applied Geophysics, 163, 1537–1560.CrossRefGoogle Scholar
  47. Masuda, T., & Suzuki, Z. (1982). Objective estimation of source parameters and local Q values by simultaneous inversion method. Physics of Earth Planetary Int, 30, 197–208.CrossRefGoogle Scholar
  48. Masuda, T., & Takagi, A. (1978). Source parameter estimates for small earthquakes, Sci Rep Tohoku Univ. Ser 5. Geophysics, 25, 39–54.Google Scholar
  49. McGarr, A. (1986). Some observation indicating complications in the nature of earthquake scaling. In: Das, S. J Boatwright and Scholtz, C. (eds.), Earthquake source mechanism, AGU Geophysical Monograph 37, Washington D.C. AGU, 217–225.Google Scholar
  50. McGurie, R. K. (1985). Ground motion estimation, in seismic hazard methodology for Nuclear facilities in the Eastern United States. EPRI project No: P101-29,6-1-20.Google Scholar
  51. Menke, W., Vadim, L., & Sethi, R. (1995). Seismic attenuation in the crust at the mid-Atlantic plate boundary in south-west Iceland. Geophysical Journal of International, 122, 175–182.CrossRefGoogle Scholar
  52. Nandy, D. R. (2001). Geodynamics of Northeastern India and the Adjoining Region (p. 209). New Delhi: ACB publication.Google Scholar
  53. Natale, De, Iannaccone, G., Martini, M., & Zollo, A. (1987). Seismic sources and attenuation properties at the Campi Flegrie Volcanic Area. Pure and Applied Geophysics, 125, 883–917.CrossRefGoogle Scholar
  54. Prejean, S. G., & Ellsworth, W. L. (2001). Observations of Earthquake Source Parameters at 2 km Depth in the Long Valley Caldera, Eastern California. Bull Seism Soc Am, 91(2), 165–177.CrossRefGoogle Scholar
  55. Prieto, G. A., Shearer, P. M., Vernon, F. L., & Kilb, D. (2004). Earthquake source scaling and self-similarity estimation from stacking P and S spectra. Journal of Geophysical Research, 109, B08310.  https://doi.org/10.1029/2004JB003084.CrossRefGoogle Scholar
  56. Raghukanth, S. T. G., & Somala, S. N. (2009). Modeling of strong motion data in northeastern India: Q, Stress drop and site amplification. Bulletin of Seismological Society of America, 99(2A), 705–725.CrossRefGoogle Scholar
  57. Rastogi, B. K., & Singh, D. D. (1978). Source parameters of the Burma-India border earthquake of July 29, 1970, from body waves. Tectonophysics, 51, 77–84.CrossRefGoogle Scholar
  58. Richter, C. F. (1958). Elementary seismology (p. 768). San Francisco: Freeman.Google Scholar
  59. Scholz, C. H. (2002). The mechanics of earthquakes and faulting. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. Scholz, C. H., Aviles, C., & Wesnousky, S. (1986). Scaling differences between large interplate and intraplate earthquakes. Bulletin of the Seismological Society of America, 76(1), 65–70.Google Scholar
  61. Sivaram, K., Kumar, D., Teotia, S. S., Rai, S. S., & Prakasam, K. S. (2013). Source parameters and scaling relations for small earthquakes in Kumaon Himalaya, India. Journal of Seismology, 17(2), 579–591.CrossRefGoogle Scholar
  62. Somerville, M. R., Peppin, W. A., & Vanwormer, J. D. (1980). An earthquake sequence in the Sierra Nevada-Great Basin boundary zone: Diamond valley. Bulletin of the Seismological Society of America, 70, 1547–1555.Google Scholar
  63. Sriram, V., Kumar, D., & Khattri, K. N. (2005). The 1986 Dharamshala earthquake of Himachal Himalaya—estimates of source parameters, average intrinsic attenuation and site amplification functions. Journal of Seismology, 9, 473–485.CrossRefGoogle Scholar
  64. Stork, A. L., & Ito, H. (2004). Source parameter scaling for small earthquakes observed at the western Nagano 800-m-deep borehole, Central Japan. Bulletin of the Seismological Society of America, 94(5), 1781–1794.CrossRefGoogle Scholar
  65. Tillottson, E. (1953). The great Assam earthquake of 1950, the completion of papers on the Assam Earthquake of August 15, 1950. Compiled by M. B. Ramachandra Rao, 94–96.Google Scholar
  66. Upadhayay, S. K., & Ahuja, V. K. (1981). Source parameters of earthquakes in Northeast India from spectra of Rayleigh waves. Tectonophysics, 75, 297–315.CrossRefGoogle Scholar
  67. Vassiliou, M. S., & Kanamori, H. (1982). The energy release in earthquakes. Bulletin of Seismological Society of America, 72, 371–387.Google Scholar
  68. Wyss, M. (1970). Stress estimates for South American shallow and deep earthquakes. Journal of Geophysical Research, 75, 1529–1544.CrossRefGoogle Scholar
  69. Wyss, M., & Brune, J. N. (1968). Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region. Journal of Geophysical Research, 73, 4681–4694.CrossRefGoogle Scholar
  70. Zúñiga, F. R. (1993). Frictional overshoot and partial stress drop, which one? Bulletin of the Seismological Society of America, 83, 939–944.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Center for SeismologyMinistry of Earth SciencesNew DelhiIndia
  2. 2.Kurukshetra UniversityKurukshetraIndia
  3. 3.Institute of Seismological ResearchGandhinagarIndia

Personalised recommendations