Advertisement

Ground Motion in Kuwait from Regional and Local Earthquakes: Potential Effects on Tall Buildings

  • Chen Gu
  • Germán A. Prieto
  • Abdullah Al-Enezi
  • Farah Al-Jeri
  • Jamal Al-Qazweeni
  • Hasan Kamal
  • Sadi Kuleli
  • Aurélien Mordret
  • Oral Büyüköztürk
  • M. Nafi Toksöz
Article

Abstract

In recent years, the construction of tall buildings has been increasing in many countries, including Kuwait and other Gulf states. These tall buildings are especially sensitive to ground shaking due to long period seismic surface waves. Although Kuwait is relatively aseismic, it has been affected by large (Mw > 6) regional earthquakes in the Zagros Fold-Thrust Belt (ZFTB). Accurate ground motion prediction for large earthquakes is important to assess the seismic hazard to tall buildings. In this study, we first analyze the observed ground motions due to two earthquakes widely felt in Kuwait: the 08/18/2014 Mw 6.2 earthquake, 360 km NNE of Kuwait City, and the 11/12/2017 Mw 7.3 earthquake, 642 km NNE of Kuwait City. The peak spectral displacement periods of the ground motion from the 08/18/2014 Mw 6.2 earthquake matched well with the ambient vibration spectra of the tallest building—the Al-Hamra Tower. We calculate the ground motions from potential regional and local earthquakes. We use a velocity model obtained by matching the observed seismograms of the 2014 and 2017 earthquakes. We calculate ground motions in Kuwait due to a regional Mw = 7.5 earthquake, and a local Mw = 5.0 earthquakes. Our study shows that a significant source of seismic hazard to tall buildings in Kuwait comes from the regional tectonic earthquakes. However, local earthquakes have the potential to generate high peak ground accelerations (~ 98 cm/s2) close to their epicenters.

Notes

Acknowledgements

This project was sponsored by the Kuwait Foundation for the Advancement of Sciences. The project was conducted as part of the Kuwait-MIT signature project on sustainability of Kuwait’s built environment under the direction of Oral Büyüköztürk.

Supplementary material

24_2018_1943_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1923 kb)

References

  1. Abbas, M. & Al-Sabri, N. A. (2015). Focal mechanism and stress tensor analysis in the south Red Sea, 9th Gulf Seismic Forum.Google Scholar
  2. Abrahamson, N., & Shedlock, K. (1997). Overview of ground motion attenuation relationships. Seismological Res. Letter, 68(1), 9–23.CrossRefGoogle Scholar
  3. Almuhaidib, A. M., & Toksöz, M. N. (2014). Numerical modeling of elastic-wave scattering by near-surface heterogeneities. Geophysics, 79(4), T199–T217.CrossRefGoogle Scholar
  4. Bommer, J. J., Stafford, P. J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-Marek, A., et al. (2017). Framework for a ground-motion model for induced seismic hazard and risk analysis in the Groningen gas field, The Netherlands. Earthquake Spectra, 33(2), 481–498.CrossRefGoogle Scholar
  5. Bouchon, M. (1981). A simple method to calculate green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), 959–971.Google Scholar
  6. Bouchon, M. (2003). A review of the discrete wavenumber method. Pure and Applied Geophysics, 160(3–4), 445–465.CrossRefGoogle Scholar
  7. Bou-Rabee, F. (1999). Site selection for the field stations of the Kuwait National Seismic Network. Seismological Research Letters, 70(6), 712–717.CrossRefGoogle Scholar
  8. Bou-Rabee, F. (2000). Seismotectonics and earthquake activity of Kuwait. Journal of Seismology, 4(2), 133–141.CrossRefGoogle Scholar
  9. Bowden, D. C., & Tsai, V. C. (2017). Earthquake ground motion amplification for surface waves. Geophysical Research Letters, 44, 121–127.  https://doi.org/10.1002/2016GL071885.CrossRefGoogle Scholar
  10. Çaktı, E., El-Hussain, I., Şeşetyan, K., Deif, A., Hancılar, U., Al-Rawas, G., et al. (2016). Development of ground-shaking maps for the Sultanate of Oman. Natural Hazards, 82(2), 1357–1373.CrossRefGoogle Scholar
  11. Carman, G. J. (1996). Structural elements of onshore Kuwait. GeoArabia, 1(2), 239–266.Google Scholar
  12. Cauzzi, C., Faccioli, E., Vanini, M., & Bianchini, A. (2015). Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bulletin of Earthquake Engineering, 13(6), 1587.CrossRefGoogle Scholar
  13. Çelebi, M., & Liu, H.-P. (1998). Before and after retrofit–response of a building during ambient and strong motions. Journal of Wind Engineering and Industrial Aerodynamics, 204(77), 259–268.CrossRefGoogle Scholar
  14. Çelebi, M., Toksöz, M. N., & Büyüköztürk, O. (2014). Rocking behavior of an instrumented unique building on the MIT campus identified from ambient shaking data. Earthquake Spectra, 30(2), 705–720.CrossRefGoogle Scholar
  15. Danciu, L., Kale, Ö., & Akkar, S. (2016). The 2014 Earthquake Model of the Middle East: ground motion model and uncertainties. Bulletin of Earthquake Engineering,.  https://doi.org/10.1007/s10518-016-9989-1.Google Scholar
  16. Denolle, M., Dunham, E., Prieto, G., & Beroza, G. (2013). Ground motion prediction of realistic earthquake sources using the ambient seismic field. Journal of Geophysical Research: Solid Earth, 118(5), 2102–2118.Google Scholar
  17. Denolle, M., Dunham, E., Prieto, G., & Beroza, G. (2014). Strong ground motion prediction using virtual earthquakes. Science, 343(6169), 399–403.CrossRefGoogle Scholar
  18. El-Hussain, A., Deif, K., Al-Jabri, A. M. E., Mohamed, G., Al-Rawas, M. N., Toksöz, N., et al. (2013). Seismic microzonation for Muscat region Sultanate of Oman. Natural Hazards, 69(3), 1919–1950.CrossRefGoogle Scholar
  19. El-Hussain, I., Deif, A., Al-Jabri, K., Toksoz, M. N., El-Hady, S., Al-Hashmi, S., et al. (2012). Probabilistic seismic hazard maps for the sultanate of Oman. Natural Hazards, 64(1), 173–210.CrossRefGoogle Scholar
  20. El-Hussain, I., Deif, A., Mohamed, A. M. E., Al-Jabri, K., Gareth, B., & Yaqoup, H. (2015). Deterministic seismic hazard assessment close to a gas field in northern Oman. Arabian Journal of Geosciences, 8(7), 4299–4316.CrossRefGoogle Scholar
  21. Giardini, D., Danciu, L., Erdik, M., Şeşetyan, K., Tümsa, M. B. D., Akkar, S., & Zare, M. (2018). Seismic hazard map of the Middle East. Bulletin of Earthquake Engineering, 1–4.Google Scholar
  22. Gök, R., Türkelli, N., Sandvol, E., Seber, D., & Barazangi, M. (2000). Regional wave propagation in Turkey and surrounding regions. Geophysical Research Letters, 27(3), 429–432.CrossRefGoogle Scholar
  23. Gu, C., Al-Jeri, F., Al-Enezi, A., Büyüköztürk, O., & Toksöz, M. N. (2017). Source mechanism study of local earthquakes in Kuwait. Seismological Research Letters, 88(6), 1465–1471.CrossRefGoogle Scholar
  24. Gupta, A. K. (1992). Response spectrum method in seismic analysis and design of structures (Vol. 4). CRC press.Google Scholar
  25. Herring, T. A., Gu, C., Toköz, M. N., Büyüköztürk, O., Parol, J., Enezi, A., Al-Jeri, F., Al-Qazweeni, J., Kamal, H. (2018). GPS Measurements of large oscillations of a tall building due to a magnitude 7.3 earthquake. Submitted.Google Scholar
  26. Jackson, J., & McKenzie, D. (1984). Active tectonics of the Alpine—Himalayan belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185–264.CrossRefGoogle Scholar
  27. Kohler, M. D., Davis, P. M., & Safak, E. (2005). Earthquake and ambient vibration monitoring of the steel-frame UCLA Factor Building. Earthquake Spectra, 21(3), 715–736.CrossRefGoogle Scholar
  28. Kottmeier, C., Agnon, A., Al-Halbouni, D., Alpert, P., Corsmeier, U., Dahm, T., et al. (2016). New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project. Science of the Total Environment, 544, 1045–1058.CrossRefGoogle Scholar
  29. Li, J., Kuleli, H. S., Zhang, H., & Toksöz, M. N. (2011a). Focal mechanism determination of induced microearthquakes in an oil field using full waveforms from shallow and deep seismic networks. Geophysics, 76(6), WC87–WC101.CrossRefGoogle Scholar
  30. Li, J., Zhang, H., Kuleli, H. S., & Toksöz, M. N. (2011b). Focal mechanism determination using high-frequency waveform matching and its application to small magnitude induced earthquakes. Geophysical Journal International, 184(3), 1261–1274.CrossRefGoogle Scholar
  31. Maeda, T., & Furumura, T. (2013). FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion[J]. Pure and Applied Geophysics, 170(1–2), 109–127.CrossRefGoogle Scholar
  32. Ni, J., & Barazangi, M. (1986). Seismotectonics of the Zagros continental collision zone and a comparison with the Himalayas. Journal of Geophysical Research: Solid Earth, 91(B8), 8205–8218.CrossRefGoogle Scholar
  33. Olsen, K. (2000). Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion. Bulletin of the Seismological Society of America, 90(6B), S77–S94.CrossRefGoogle Scholar
  34. Olsen, K. B., Archuleta, R. J., & Matarese, J. R. (1995). Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault. Science, 270(5242), 1628.CrossRefGoogle Scholar
  35. Olsen, K., Day, S., Dalguer, L., Mayhew, J., Cui, Y., Zhu, J., et al. (2009). Shakeout-d: Ground motion estimates using an ensemble of large earthquakes on the southern San Andreas fault with spontaneous rupture propagation. Geophysical Research Letters, 36(4), L04303.CrossRefGoogle Scholar
  36. Olsen, K., Day, S., Minster, J., Cui, Y., Chourasia, A., Faerman, M., et al. (2006). Strong shaking in Los Angeles expected from southern San Andreas earthquake. Geophysical Research Letters, 33(7), L07305.CrossRefGoogle Scholar
  37. Pasyanos, M. E., Tkalčić, H., Gök, R., Al-Enezi, A., & Rodgers, A. J. (2007). Seismic structure of Kuwait. Geophysical Journal International, 170(1), 299–312.CrossRefGoogle Scholar
  38. Pitarka, A., Al-Amri, A., Pasyanos, M. E., Rodgers, A. J., & Mellors, R. J. (2015). Long period ground motion in the Arabian Gulf from earthquakes in the Zagros mountains thrust belt. Pure and Applied Geophysics, 172(10), 2517–2532.CrossRefGoogle Scholar
  39. Pitarka, A., Irikura, K., Iwata, T., & Sekiguchi, H. (1998). Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, earthquake. Bulletin of the Seismological Society of America, 88(2), 428–440.Google Scholar
  40. Pitarka, A., Pasyanos, M., Mellors, R., & Rodgers, A. (2012). Observation and simulation of long-period ground motions in the Persian/Arabian Gulf from earthquakes in Zagros thrust belt. Livermore: Tech. rep., Lawrence Livermore National Laboratory (LLNL).CrossRefGoogle Scholar
  41. Prieto, G. A., & Beroza, G. C. (2008). Earthquake ground motion prediction using the ambient seismic field. Geophysical Research Letters, 35(14), L14304.CrossRefGoogle Scholar
  42. Prieto, G. A., Lawrence, J. F., Chung, A. I., & Kohler, M. D. (2010). Impulse response of civil structures from ambient noise analysis. Bulletin of the Seismological Society of America, 100(5A), 2322–2328.CrossRefGoogle Scholar
  43. Rubinstein, J. L., & Mahani, A. B. (2015). Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismological Research Letters, 86(4), 1060–1067.CrossRefGoogle Scholar
  44. Sadek, A. (2004). Seismic map for the State of Kuwait. Emirates Journal for Engineering Research, 9(2), 53–58.Google Scholar
  45. Sarkar, S. (2008). Reservoir monitoring using induced seismicity at a petroleum field in Oman, Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  46. Şeşetyan, K., Danciu, L., Demircioğlu Tümsa, M. B., et al. (2018). The 2014 Earthquake Model of the Middle East: overview and results. Bulletin of Earthquake Engineering,.  https://doi.org/10.1007/s10518-018-0346-4.Google Scholar
  47. Shakal, A. F., Huang, M. J., & Darragh, R. B. (1996). Interpretation of significant ground-response and structure strong motions recorded during the 1994 Northridge earthquake. Bulletin of the Seismological Society of America, 86(1B), S231–S246.Google Scholar
  48. Shapiro, S. A. (2015). Fluid-Induced Seismicity, Cambridge University Press.Google Scholar
  49. Snieder, R., & Sáfak, E. (2006). Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California. Bulletin of the Seismological Society of America, 96(2), 586–598.CrossRefGoogle Scholar
  50. Sun, H., Mordret, A., Prieto, G. A., Toksöz, M. N., & Büyüköztürk, O. (2017). Bayesian characterization of buildings using seismic interferometry on ambient vibrations. Mechanical Systems and Signal Processing, 85, 468–486.CrossRefGoogle Scholar
  51. Talebian, M., & Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3), 506–526.CrossRefGoogle Scholar
  52. Zoback, M. D., & Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences, 109(26), 10164–10168.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Chen Gu
    • 1
  • Germán A. Prieto
    • 4
  • Abdullah Al-Enezi
    • 3
  • Farah Al-Jeri
    • 3
  • Jamal Al-Qazweeni
    • 3
  • Hasan Kamal
    • 3
  • Sadi Kuleli
    • 1
  • Aurélien Mordret
    • 1
  • Oral Büyüköztürk
    • 2
  • M. Nafi Toksöz
    • 1
  1. 1.Earth Resources Laboratory, Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Laboratory for Infrastructure Science and Sustainability, Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Kuwait Institute for Scientific ResearchKuwait CityKuwait
  4. 4.Departamento de Geociencias, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations