Pure and Applied Geophysics

, Volume 176, Issue 1, pp 371–388 | Cite as

Thermodynamics and Microphysics Relation During CAIPEEX-I

  • Sudarsan BeraEmail author
  • T. V. Prabha
  • N. Malap
  • S. Patade
  • M. Konwar
  • P. Murugavel
  • D. Axisa


Influence of the environmental thermodynamics on the microphysics of deep cumulus clouds over different parts of India is studied using in situ airborne observations from the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) during 2009. This study provides an understanding of the thermodynamics–microphysics relation over the Indian summer-monsoon region. Relatively stronger updraft and turbulence are noted in the pre-monsoon cloud base layers compared to that of the monsoon clouds. It is illustrated from the in situ observations as well as from a microphysical parcel model that the vertical variation of cloud droplet number concentration (CDNC) has a well-defined peak at a certain height above the cloud base. This elevated CDNC peak is found to be connected with the cloud parcel buoyancy and cumulative convective available potential energy (cCAPE). Higher parcel buoyancy above the cloud base of dry pre-monsoon clouds is associated with stronger in-cloud updraft velocity, higher supersaturation and higher droplet number concentration (in addition to aerosol effect). Higher adiabatic fraction and lower entrainment rate are observed in polluted clouds where boundary layer moisture is low, compared to clean clouds. Relative dispersion of droplet size distribution is found to vary concurrently with air mass characteristics and aerosol number concentration observed over different locations during the experiment. Aerosol–precipitation relationships are also investigated from the observation. Maximum reflectivity and rain rates showed a direct link with boundary layer water vapor content rather than with subcloud aerosol number concentration.



The CAIPEEX project and IITM are fully funded by Ministry of Earth Sciences, Government of India, New Delhi.


  1. Ackerman, A. S., Kirkpatrick, K. P., Stevens, D. E., & Toon, O. B. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 1014–1017. Scholar
  2. Albrecht, B. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230. Scholar
  3. Andrea, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., et al. (2004). Smoking rain clouds over Amazon. Science, 303, 1337–1342.CrossRefGoogle Scholar
  4. Bera, S., Pandithurai, G., & Prabha, T. V. (2016a). Entrainment and droplet spectral characteristics in convective clouds during transition to monsoon. Atmospheric Science Letters, 17, 286–293. Scholar
  5. Bera, S., Prabha, T. V., & Grabowski, W. W. (2016b). Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing. Journal of Geophysical Research: Atmospheres, 121, 9767–9788. Scholar
  6. Blyth, A., Cooper, W. A., & Jensen, J. B. (1988). A study of the source of entrained air in Montana cumuli. Journal of Atmospheric Science, 45, 3944–3964.<3944:ASOTSO>2.0.CO;2.CrossRefGoogle Scholar
  7. Böing, S. J., Jonker, H. J. J., Nawara, W. A., & Siebesma, A. P. (2014). On the deceiving aspects of mixing diagrams of deep cumulus convection. Journal of the Atmospheric Sciences, 71, 56–68.CrossRefGoogle Scholar
  8. Derksen, J. W. B., Roelofs, G.-J. H., & Rockmann, T. (2009). Influence of entrainment of CCN on microphysical properties of warm cumulus. Atmospheric Chemistry and Physics, 9, 6005–6015.CrossRefGoogle Scholar
  9. Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., et al. (2018). Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359(6374), 411–418. Scholar
  10. Gayatri, K., Patade, S., & Prabha, T. V. (2017). Aerosol–Cloud interaction in deep convective clouds over the Indian Peninsula using spectral (bin) microphysics. Journal of Atmospheric Sciences, 74, 3145–3166. Scholar
  11. Gerber, H., Frick, G., Jensen, J., & Hudson, J. (2008). Entrainment, mixing, and microphysics in trade-wind cumulus. Journal of the Meteorological Society of Japan, 86A, 87–106.CrossRefGoogle Scholar
  12. Jensen, J. B., Austin, P. H., Baker, M. B., & Blyth, A. M. (1985). Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud. Journal of the Atmospheric Sciences, 42, 173–192.CrossRefGoogle Scholar
  13. Jensen, J. B., & Baker, M. B. (1989). A simple model of droplet spectral evolution during turbulent mixing. Journal of the Atmospheric Sciences, 46, 2812–2829.CrossRefGoogle Scholar
  14. Khain, A. P. (2009). Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environmental Research Letters, 4, 015004. Scholar
  15. Khain, A. P., Roseenfeld, D., & Pokrovsky, A. (2005). Aerosol impact on the dynamics and microphysics of deep convective clouds. Quarterly Journal of the Royal Meteorological Society, 131, 2639–2663. Scholar
  16. Konwar, M., Maheskumar, R. S., Kulkarni, J. R., Freud, E., Goswami, B. N., & Rosenfeld, D. (2012). Aerosol control on depth of warm rain in convective clouds. Journal of Geophysical Research: Atmospheres, 117, D13204. Scholar
  17. Konwar, M., Panicker, A. S., Axisa, D., & Prabha, T. V. (2015). Near-cloud aerosols in monsoon environment and its impact on radiative forcing. Journal of Geophysical Research, 120, 1445–1457.Google Scholar
  18. Kucieńska, B., Montero-Martínez, G., & García-García, F. (2010). A simulation of the influence of organic and inorganic pollutants on the formation and development of warm clouds over Mexico City. Atmospheric Research, 95, 487–495.CrossRefGoogle Scholar
  19. Kulkarni, J. R., Maheshkumar, R. S., Morwal, S. B., Padma kumara, B., Konwar, M., Deshpade, C. G., et al. (2012). Cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX): overview and preliminary results. Current Science, 102, 413–425.Google Scholar
  20. Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., & Ding, Y. (2011). Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geoscience, 4, 888–894.CrossRefGoogle Scholar
  21. Lu, M. L., Feingold, G., Jonsson, H. H., Chuang, P. Y., Gates, H., Flagan, R. C., et al. (2008). Aerosol–cloud relationship in continental shallow clouds. Journal of Geophysical Research: Atmospheres, 113, D15201. Scholar
  22. Lu, C., Liu, Y., Yum, S. S., Niu, S., & Endo, S. (2012). A new approach for estimating entrainment rate in cumulus clouds. Geophysical Research Letters, 39, L04802.Google Scholar
  23. Mechem, D. B., Yuter, S. E., & de Szoeke, S. P. (2012). Thermo-dynamic and aerosol controls in southeast Pacific stratocumulus. Journal of Atmospheric Science, 69, 1250–1266. Scholar
  24. Miles, N. L., Verlinde, J., & Clothiaux, E. E. (2000). Cloud droplet size distributions in lowlevel stratiform clouds. Journal of Atmospheric Science, 57, 295–311.CrossRefGoogle Scholar
  25. Morrison, H., & Grabowski, W. W. (2007). Comparison of bulk and binwarm-rain microphysics models using a kinematic framework. Journal of the Atmospheric Sciences, 64, 2839–2861.CrossRefGoogle Scholar
  26. Murugavel, P., Malap, N., Balaji, B., Mehajan, R. K., & Prabha, T. V. (2017). Precipitable water as a predictor of LCL height. Theoretical and Applied Climatology, 130, 467.CrossRefGoogle Scholar
  27. Nair, S., Sanjay, J., Pandithurai, G., Maheskumar, R. S., & Kulkarni, J. R. (2012). On the parameterization of cloud droplet effective radius using CAIPEEX aircraft observations for warm clouds in India. Atmospheric Research, 108, 104–114. Scholar
  28. Paluch, I. R. (1979). The entrainment mechanism in Colorado cumuli. Journal of Atmospheric Science, 36, 2467–2478.CrossRefGoogle Scholar
  29. Pandithurai, G., Dipu, S., Prabha, T. V., Maheshkumar, R. S., Kulkarni, J. R., & Goswami, B. N. (2012). Aerosol effect on droplet spectral dispersion in warm continental cumuli. Journal of Geophysical Research: Atmospheres, 117(1–15), D16202. Scholar
  30. Patade, S., Prabha, T. V., Axisa, D., Gayatri, K., & Heymsfield, A. (2015). Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX. Journal of Geophysical Research: Atmospheres, 120, 10418–10440.Google Scholar
  31. Patade, S., Shete, S., Malap, N., Kulkarni, G., & Prabha, T. V. (2016). Observational and simulated cloud microphysical features of rain formation in the mixed phase clouds observed during CAIPEEX. Atmospheric Research, 169, 32–45.CrossRefGoogle Scholar
  32. Prabha, T. V., Khain, A., Maheshkumar, R. S., Pandithurai, G., Kulkarni, J. R., Konwar, M., et al. (2011). Microphysics of pre-monsoon and monsoon clouds as seen from in situ measurements during CAIPEEX. Journal of Atmospheric Science, 68, 1882–1901.CrossRefGoogle Scholar
  33. Prabha, T. V., Patade, S., Pandithurai, G., Khain, A., Axisa, D., Pradeep-Kumar, P., et al. (2012). Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley. Journal of Geophysical Research, 117, D20205. Scholar
  34. Raga, G. R., Jensen, J. B., & Baker, M. B. (1990). Characteristics of cumulus band clouds off the coast of Hawaii. Journal of Atmospheric Science, 47, 338–356.CrossRefGoogle Scholar
  35. Rangno, A. L., & Hobbs, P. V. (2005). Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quarterly Journal of the Royal Meteorological Society, 131, 639–673.CrossRefGoogle Scholar
  36. Rosenfeld, D., Lohmann, U., Raga, G. B., O’Dowd, C. D., Kulmala, M., Fuzzi, S., et al. (2008). Flood or drought: How do aerosols affect precipitation? Science, 321(5894), 1309–1313.CrossRefGoogle Scholar
  37. Siebesma, A. P., et al. (2003). A large-eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences, 60, 1202–1219.CrossRefGoogle Scholar
  38. Thomas, L., Malap, N., Grabowski, W. W., Dani, K., & Prabhakran, T. V. (2018). Convective environment in pre-monsoon and monsoon conditions over the Indian subcontinent: the impact of surface forcing. Atmospheric Chemistry and Physics Discussions. Scholar
  39. Tölle, M. H., & Krueger, S. K. (2014). Effects of entrainment and mixing on droplet size distributions in warm cumulus clouds. Journal of Advances in Modeling Earth Systems, 6, 281–299. Scholar
  40. Twomey, S. (1977). The influence of the pollution in the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 34, 1149–1152.<1149:TIOPOT>2.0.CO;2.CrossRefGoogle Scholar
  41. Wang, S., Wang, Q., & Feingold, G. (2003). Turbulence, condensation, and liquid water transport in numerically simulated non-precipitating stratocumulus clouds. Journal of the Atmospheric Sciences, 60, 262–278.<0262:tcalwt>;2.CrossRefGoogle Scholar
  42. Warner, J. (1969). The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. Journal of the Atmospheric Sciences, 26, 1049–1059.CrossRefGoogle Scholar
  43. Warren, S. G., Hahn, C. J., London, J., Chervine, R. M., & Jenne, R. L. (1986). Global distribution of total cloud cover and cloud type amounts over land. NCAR Tech. Note NCAR/TN-273 + STR, 29 pp.Google Scholar
  44. Xue, H., & Feingold, G. (2006). Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. Journal of the Atmospheric Sciences, 63, 1605–1622. Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
  3. 3.Droplet Measurement TechnologiesLongmontUSA

Personalised recommendations