Advertisement

The 2014 Cephalonia Earthquakes: Finite Fault Modeling, Fault Segmentation, Shear and Thrusting at the NW Aegean Arc (Greece)

Article
  • 19 Downloads

Abstract

We present refined finite fault models (FFM) for the 2014 Cephalonia (Keffalinia, Kefalonia) seismic sequence (Mw ~ 6.0), at the NW edge of the Aegean Arc (Ionian Sea). The area represents the seismically most active part of Europe and a continental promontory in which fault modeling is a challenge because of structural complexity and poor coverage by seismological, GPS and InSAR data. Inversion was based on GPS data and a new algorithm permitting fusion of slip vectors of individual earthquakes and of their cumulative dislocation and accepting constraints and collocation-type analysis of uncertainties. Computed FFM, which correspond to an essentially strike-slip fault and a blind, shallow oblique slip thrust, were assessed by sensitivity analysis and InSAR data and are consistent with the tectonic fabric of the area. They can also explain the observed extreme peak ground accelerations. The 2014 faults, in combination with FFMs of the 2003 and 2015 Leucas (Lefkada, Lefkas) earthquakes farther NE and of the 1983 M7.0 earthquake farther SW, constrain a > 100 km long immature, strike-slip fault zone along/close to the Cephalonia–Leucas coasts. This fault pattern, previously regarded as a poorly documented Cephalonia Transform Fault, consists of occasionally overlapping oblique slip segments with variable geometric and kinematic characteristics in a shear zone landwards of the plate interface, as evidence from seismic profiles reveals. This pattern may explain the enigmatic superimposition of shear and compression in the NW edge of the Aegean Arc.

Keywords

Strong motion salt tectonics/evaporite mobilization collocation sensitivity analysis stochastic inversion InSAR convergent margin fold-and-thrust belt 

Notes

Acknowledgements

We thank the Associate Editor, M. Sachpazi and two anonymous reviewers for their constructive comments. VS thanks S. Metzger for her assistance in handling InSAR data. Discussions with C. Talbot and Dr. J. Hassanpour on evaporite mobilization are acknowledged. We also thank G. Polykretis (Tree Co, Athens) for providing data from station KEFA of the URANUS GPS network. We also are grateful to M. Gianniou and The National Cadastre and Mapping Agency of Greece for providing slip vectors for station 040A of the Hellenic Positioning System (HEPOS) network. Stations VLSM, KIPO and PONT belong to National Observatory of Athens (NOA) open access network (http://www.gein.noa.gr/services/GPS/noa_gps.html). Campaign stations (KAT1 and ASSO) were initially measured by University of Patras and Ecole Normale Superieure, Paris, in the framework of the Ph.D. thesis of E. Perouse (2013) and the data used in this work are summarized in Table S1.

Supplementary material

24_2018_1938_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2129 kb)

References

  1. Aftabi, P., Roustaie, M., Ian Alsop, G., & Talbot, C. J. (2010). InSAR mapping and modelling of an active Iranian salt extrusion. Journal of the Geological Society, 167(1), 155–170.  https://doi.org/10.1144/0016-76492008-165.CrossRefGoogle Scholar
  2. Allen, C. R., Brune, J. N., Cluff, L. S., & Barrows, A. G. (1998). Evidence for unusually strong near-field motion on the hanging wall of the San Fernando fault during the 1971 earthquake. Seismological Research Letters, 69, 524–531.  https://doi.org/10.1785/gssrl.69.6.524.CrossRefGoogle Scholar
  3. Altamimi, Z., Collilieux, X., & Métivier, L. (2011). ITRF2008: An improved solution of the international terrestrial reference frame. Journal of Geodesy, 85, 457–473.  https://doi.org/10.1007/s00190-011-0444-4.CrossRefGoogle Scholar
  4. Anderson, H., & Jackson, J. (1987). Active tectonics of the Adriatic region. Geophysical Journal of the Royal Astronomical Society, 91, 937–983.  https://doi.org/10.1111/j.1365-246X.1987.tb01675.x.CrossRefGoogle Scholar
  5. Aoi, S., Kunugi, T., & Fujiwara, H. (2008). Trampoline effect in extreme ground motion. Science, 322(5902), 727–730.  https://doi.org/10.1126/science.1163113.CrossRefGoogle Scholar
  6. Avallone, A., Cirella, A., Cheloni, D., Tolomei, C., Theodoulidis, N., Piatanesi, A., et al. (2017). Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history. Scientific Reports, 7(1), 10358.  https://doi.org/10.1038/s41598-017-10431-w.CrossRefGoogle Scholar
  7. Avouac, J.-P., Ayoub, F., Wei, S., Ampuero, J.-P., Meng, L., Leprince, S., et al. (2014). The 2013, M w 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault. Earth and Planetary Science Letters, 391, 128–134.CrossRefGoogle Scholar
  8. BP Co. Ltd (1971). The geological results of petroleum exploration in Western Greece, Publication No. 10. Athens: Institute of Geology and Subsurface Research.Google Scholar
  9. Baker, C., Hatzfeld, D., Lyon-Caen, H., Papadimitriou, E., & Rigo, A. (1997). Earthquake mechanisms of the Adriatic Sea and Western Greece: Implications for the oceanic subduction-continental collision transition. Geophysical Journal International, 131, 559–594.  https://doi.org/10.1111/j.1365-246X.1997.tb06600.x.CrossRefGoogle Scholar
  10. Bardet, J.P., & Davis C.A. (1996). Performance of San Fernando Dams during 1994 Northridge Earthquake. Journal of Geotechnical Engineering 122(7), 10555, 554–564.Google Scholar
  11. Barnhart, W. D., & Lohman, R. B. (2013). Phantom earthquakes and triggered aseismic creep: Vertical partitioning of strain during earthquake sequences in Iran. Geophysical Research Letters, 40, 819–823.  https://doi.org/10.1002/grl.50201.CrossRefGoogle Scholar
  12. Battaglia, M., Cervelli, P.F., & Murray, J.R. (2013). Modeling crustal deformation near active faults and volcanic centers—a catalog of deformation models, chapter 1 of section B, modeling of volcanic processes book 13, volcanic monitoring techniques and methods 13-B1, U.S. Geological Survey.Google Scholar
  13. Benetatos, C., Kiratzi, A., Roumelioti, Z., Stavrakakis, G., Drakatos, G., & Latoussakis, I. (2005). The 14 August 2003 Lefkada Island (Greece) earthquake: Focal mechanisms of the mainshock and of the aftershock sequence. Journal of Seismology, 9(2), 171–190.  https://doi.org/10.1007/s10950-005-7092-1.CrossRefGoogle Scholar
  14. Bohnhoff, M., Bulut, F., Dresen, G., Eken, T., Malin, P. E., & Aktar, M. (2013). An earthquake gap south of Istanbul. Nature Communications, 4, 1999.  https://doi.org/10.1038/ncomms2999.CrossRefGoogle Scholar
  15. Bornovas, J., & Rondoyanni, T. (1983). Geological map of Greece, 1:500,000 scale. Athens: Institute of Geology and Mineral Exploration.Google Scholar
  16. Bouckovalas, G. (2014). Cephalonia earthquakes report, Technical Chamber of Greece, http://users.ntua.gr/gbouck/presentations/2014-Cefallonia-TEE.pdf.
  17. Bradley, B. A., Quigley, M. C., Van Dissen, R. J., & Litchfield, N. J. (2014). Ground motion and seismic source aspects of the Canterbury earthquake sequence. Earthquake Spectra, 30(1), 1–15.  https://doi.org/10.1193/030113EQS060M.CrossRefGoogle Scholar
  18. Briole, P., Elias, P., Parcharidis, I., Bignami, C., Benekos, G., Samsonov, S., et al. (2015). The seismic sequence of January–February 2014 at Cephalonia Island (Greece): Constraints from SAR interferometry and GPS. Geophysical Journal International, 203(3), 1528–1540.  https://doi.org/10.1093/gji/ggv353.CrossRefGoogle Scholar
  19. Brooks, M., & Ferentinos, G. (1984). Tectonics and sedimentation in the Gulf of Corinth and the Zakynthos and Kefallinia channels, Western Greece. Tectonophysics, 101(1–2), 25–54.  https://doi.org/10.1016/0040-1951(84)90040-4.CrossRefGoogle Scholar
  20. Chamot-Rooke, N., Rangin, C., & Le Pichon, X. (Eds.) (2005). DOTMED-deep offshore tectonics of the mediterranean: A synthesis of deep marine data in eastern mediterranean (vol. 177, p. 64) Mémoires de la Société géologique de France. Paris: Soc. Geol. de Fr.Google Scholar
  21. Cheloni, D., et al. (2017). Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophysical Research Letters, 44, 6778–6787.  https://doi.org/10.1002/2017GL073580.CrossRefGoogle Scholar
  22. Clément, C., Hirn, A., Charvis, P., Sachpazi, M., & Marnelis, F. (2000). Seismic structure and the active Hellenic subduction in the Ionian islands. Tectonophysics, 329(1–4), 141–156.CrossRefGoogle Scholar
  23. Cushing, M. (1985). Evolution structurale de la marge nord ouest hellenique dans l’ıle de Levkas et ses environs (Grece nord occidentale), Ph.D. Thesis, University of Paris-Sud, France (in French).  https://doi.org/10.5281/zenodo.265182.
  24. Davison, I. (2009). Faulting and fluid flow through salt. Journal of the Geological Society of London, 166, 205–216.  https://doi.org/10.1144/0016-76492008-064.CrossRefGoogle Scholar
  25. De Paola, N., Collettini, C., Faulkner, D. R., & Trippetta, F. (2008). Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics, 27(4), TC4017.  https://doi.org/10.1029/2007tc002230.CrossRefGoogle Scholar
  26. Dermanis, A. (1984). Kriging and collocation—a comparison. Manuscripta Geodetica, 9(3), 159–167.Google Scholar
  27. Ding, K., Freymueller, J., Wang, Q., & Zou, R. (2015). Coseismic and early postseismic deformation of the 5 January 2013 M w 7.5 Craig earthquake from static and kinematic GPS solutions. Bulletin of the Seismological Society of America, 105(2B), 1153–1164.  https://doi.org/10.1785/0120140172.CrossRefGoogle Scholar
  28. Douilly, R., Aochi, H., Calais, E., & Freed, A. M. (2015). Three-dimensional dynamic rupture simulations across interacting faults: The M w 7.0, 2010, Haiti earthquake. Journal of Geophysical Research: Solid Earth, 120(2), 1108–1128.  https://doi.org/10.1002/2014jb011595.Google Scholar
  29. Elliott, J. R., Nissen, E. K., England, P. C., Jackson, J. A., Lamb, S., Li, Z., et al. (2012). Slip in the 2010–2011 Canterbury earthquakes, New Zealand. Journal of Geophysical Research, 117, B03401.  https://doi.org/10.1029/2011JB008868.Google Scholar
  30. Feng, L., Newman, A. V., Farmer, G. T., Psimoulis, P., & Stiros, S. C. (2010). Energetic rupture, coseismic and post-seismic response of the 2008 M w 6.4 Achaia-Elia earthquake in northwestern Peloponnese, Greece: An indicator of an immature transform fault zone. Geophysical Journal International, 183(1), 103–110.  https://doi.org/10.1111/j.1365-246X.2010.04747.x.CrossRefGoogle Scholar
  31. Fry, B., Benites, R., & Kaiser, A. (2011). The character of accelerations in the M w 6.2 Christchurch earthquake. Seismological Research Letters, 82, 846–852.  https://doi.org/10.1785/gssrl.82.6.846.CrossRefGoogle Scholar
  32. Garini, E., Gazetas, G., & Anastasopoulos, I. (2015). 3-dimensional rocking and sliding case histories in the 2014 Cephalonia, Greece Earthquakes. In Proceedings, International Conference on Earthquake Geotechnical Engineering, 1–4 November 2015, Christchurch, New Zealand.Google Scholar
  33. Herring, T.A., King, R.W., & McClusky, S.C. (2010a). GAMIT reference manual–GPS analysis at MIT–Release 10.4, Dep. of Earth, Atm. and Planetary Sciences, Dep. of Earth, Atmos., and Planet. Sci., Mass. Inst. of Technol., Cambridge.Google Scholar
  34. Herring, T.A., King, R.W., & McClusky, S.C. (2010b). GLOBK reference manual, Global Kalman filter VLBI and GPS analysis program, release 10.4, Atm. and Planetary Sciences, Dep. of Earth, Atmos., and Planet. Sci., Mass. Inst. of Technol., Cambridge.Google Scholar
  35. Hollenstein, C., Müller, M., Geiger, A., & Kahle, H. G. (2008). Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics, 449(1–4), 17–40.CrossRefGoogle Scholar
  36. Howell, A., Jackson, J., England, P., Higham, T., & Synolakis, C. (2015). Late Holocene uplift of Rhodes, Greece: Evidence for a large tsunamigenic earthquake and the implications for the tectonics of the eastern Hellenic Trench System. Geophysical Journal International, 203(1), 459–474.  https://doi.org/10.1093/gji/ggv307.CrossRefGoogle Scholar
  37. Hreinsdóttir, S., Freymueller, J. T., Fletcher, H. J., Larsen, C. F., & Bürgmann, R. (2003). Coseismic slip distribution of the 2002 M w7.9 Denali fault earthquake, Alaska, determined from GPS measurements. Geophysical Research Letters, 30, 1670.  https://doi.org/10.1029/2003GL017447,13.CrossRefGoogle Scholar
  38. Jackson, J., Fitch, T., McKenzie, D. (1981). Active thrusting and the evolution of the Zagros fold belt. In K. Mclay, N. Price (Eds.), Thrust and nappe tectonics. (vol. 9, pp. 371–379). Special Publication. Geological Society: London.Google Scholar
  39. Karakostas, V., Papadimitriou, E., Mesimeri, M., Gkarlaouni, C., & Paradisopoulou, P. (2015). The 2014 Kefalonia Doublet (M w6.1 and M w6.0), central Ionian Islands, Greece: Seismotectonic implications along the Kefalonia transform fault zone. Acta Geophysica, 63(1), 1–16.  https://doi.org/10.2478/s11600-014-0227-4.CrossRefGoogle Scholar
  40. Karastathis, V. K., Mouzakiotis, E., Ganas, A., & Papadopoulos, G. A. (2015). High-precision relocation of seismic sequences above a dipping Moho: The case of the January–February 2014 seismic sequence on Cephalonia island (Greece). Solid Earth, 6(1), 173–184.  https://doi.org/10.5194/se-6-173-2015.CrossRefGoogle Scholar
  41. Kiratzi, A. A., & Langston, C. A. (1991). Moment tensor inversion of the 1983 January 17 Kefallinia event of Ionian islands (Greece). Geophysical Journal International, 105(2), 529–535.  https://doi.org/10.1111/j.1365-246X.1991.tb06731.x.CrossRefGoogle Scholar
  42. Kokinou, E., Papadimitriou, E., Karakostas, V., Kamberis, E., & Vallianatos, F. (2006). The Kefalonia transform zone (offshore western Greece) with special emphasis to its prolongation towards the Ionian abyssal plain. Marine Geophysical Researches, 27(4), 241–252.  https://doi.org/10.1007/s11001-006-9005-2.CrossRefGoogle Scholar
  43. Konstantinou, K., Mouslopoulou, V., Liang, W.-T., Heidbach, O., Oncken, O., & Suppe, J. (2017). Present-day crustal stress field in Greece inferred from regional-scale damped inversion of earthquake focal mechanisms. Journal of Geophysical Research.  https://doi.org/10.1002/2016JB013272.Google Scholar
  44. Kontogianni, V. A., Tsoulos, N., & Stiros, S. C. (2002). Coastal uplift, earthquakes and active faulting of Rhodes Island (Aegean Arc): Modeling based on geodetic inversion. Marine Geology, 186(3–4), 299–317.  https://doi.org/10.1016/S0025-3227(02)00334-1.CrossRefGoogle Scholar
  45. Kotsakis, C. (2007). Least-squares collocation with covariance-matching constraints. Journal of Geodesy, 81(10), 661–677.  https://doi.org/10.1007/s00190-007-0133-5.CrossRefGoogle Scholar
  46. Kreemer, C., Blewitt, G., & Maerten, F. (2006). Co- and postseismic deformation of the 28 March 2005 Nias M w8.7 earthquake from continuous GPS data. Geophysical Research Letters, 33, L07307.  https://doi.org/10.1029/2012GL052430.Google Scholar
  47. Langbein, J., Murray, J. R., & Snyder, H. A. (2006). Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by Global Positioning System, electronic distance meter, creepmeters, and borehole strainmeters. Bulletin of the Seismological Society of America, 96(4B), S304–S320.  https://doi.org/10.1785/0120050823.CrossRefGoogle Scholar
  48. Lekkas, E. L., & Mavroulis, S. D. (2015). Earthquake environmental effects and ESI 2007 seismic intensities of the early 2014 Cephalonia (Ionian Sea, western Greece) earthquakes (January 26 and February 3, M w 6.0). Natural Hazards, 78(3), 1517–1544.  https://doi.org/10.1007/s11069-015-1791-x.CrossRefGoogle Scholar
  49. Louvari, E., Kiratzi, A., & Papazachos, B. (1999). The Cephalonia transform fault and its extension to western Lefkada Island (Greece). Tectonophysics, 308(1–2), 223–236.  https://doi.org/10.1016/S0040-1951(99)00078-5.CrossRefGoogle Scholar
  50. Ma, K.-F., Lee, C.-T., Tsai, Y.-B., Shin, T.-C., & Mori, J. (1999). The Chi-Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault. Eos Transactions AGU, 80(50), 605–611.CrossRefGoogle Scholar
  51. Manighetti, I., Caulet, C., Barros, L. D., Perrin, C., Cappa, F., & Gaudemer, Y. (2015). Generic along-strike segmentation of Afar normal faults, East Africa: Implications on fault growth and stress heterogeneity on seismogenic fault planes. Geochemistry, Geophysics, Geosystems, 16, 443–467.  https://doi.org/10.1002/2014GC005691.CrossRefGoogle Scholar
  52. Marone, C., Scholtz, C., & Bilham, R. (1991). On the mechanics of earthquake afterslip. Journal of Geophysical Research: Solid Earth, 96(B5), 8441–8452.  https://doi.org/10.1029/91JB00275.CrossRefGoogle Scholar
  53. Menke, W. (2012). Geophysical data analysis: Discrete inverse theory, MATLAB Edition, Third Ed., Amsterdam: Elsevier.Google Scholar
  54. Mercier, J.-L., Delibassis, N., Gauthier, A., Jarrige, J., Lemeille, F., Philip, H., et al. (1979). La neotectonique de I’arc Egten. Review of Geolgraphy and Dynamic Geographical Physics, 21(1), 67–92.Google Scholar
  55. Merryman Boncori, J. P., Papoutsis, I., Pezzo, G., Tolomei, C., Atzori, S., Ganas, A., et al. (2015). The February 2014 Cephalonia earthquake (Greece): 3D deformation field and source modeling from multiple SAR techniques. Seismological Research Letters, 86(1), 124–137.  https://doi.org/10.1785/0220140126.CrossRefGoogle Scholar
  56. Mikhail, E. M. (1976). Observations and Least Squares. New York: IEP-A Dun- Donnelley Publisher.Google Scholar
  57. Moir, H., Lunn, R. J., Shipton, Z., & Kirkpatrick, J. (2010). Simulating brittle fault evolution from networks of pre-existing joints within crystalline rock. Journal of Structural Geology, 32(11), 1742–1752.  https://doi.org/10.1016/j.jsg.2009.08.016.CrossRefGoogle Scholar
  58. Moschas, F., & Stiros, S. (2013). Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments. Measurement, 46(4), 1488–1506.  https://doi.org/10.1016/j.measurement.2012.12.015.CrossRefGoogle Scholar
  59. Nicol, A., Watterson, J., Walsh, J. J., & Childs, C. (1996). The shapes, major axis orientations and displacement patterns of fault surfaces. Journal of Structural Geology, 18(2/3), 235–248.CrossRefGoogle Scholar
  60. Nissen, E., Jackson, J., Jahani, S., & Tatar, M. (2014). Zagros “phantom earthquakes” reassessed—The interplay of seismicity and deep salt flow in the Simply Folded Belt? Journal of Geophysical Research, 119(4), 3561–3583.  https://doi.org/10.1002/2013JB010796.Google Scholar
  61. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  62. Papadopoulos, G. A., Karastathis, V. K., Koukouvelas, I., Sachpazi, M., Baskoutas, I., Chouliaras, G., et al. (2014). The Cephalonia, Ionian Sea (Greece), sequence of strong earthquakes of January–February 2014: A first report. Res. Geophys., 4, 19–30.  https://doi.org/10.4081/rg.2014.5441.Google Scholar
  63. Papathanassiou, G., Valkaniotis, S., & Ganas, A. (2017). Evaluation of the macroseismic intensities triggered by the January/February 2014 Cephalonia, (Greece) earthquakes based on ESI-07 scale and their comparison to 1867 historical event. Quaternary International, 451, 234–247.  https://doi.org/10.1016/j.quaint.2016.09.039.CrossRefGoogle Scholar
  64. Papazachos, B., & Papazachou, C. (1997). The earthquakes of Greece (p. 304). Thessaloniki: P. Ziti and Co.Google Scholar
  65. Perouse, E. (2013). Cinematique et tectonique active de l’Ouest de la Grece dans le cadre geodynamique de la Mediterranee Centrale et Orientale, Ph.D. Thesis, University Paris XI (in French).Google Scholar
  66. Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F., & Gaudemer, Y. (2016). Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 121, 3666–3685.  https://doi.org/10.1002/2015JB012671.Google Scholar
  67. Pirazzoli, P. A., Laborel, J., & Stiros, S. C. (1996). Earthquake clustering in the eastern Mediterranean during historical times. Journal of Geophysical Research, 101(3), 6083–6097.  https://doi.org/10.1029/95JB00914.CrossRefGoogle Scholar
  68. Pitarka, A., Dalguer, L. A., Day, S. M., Somerville, P. G., & Dan, K. (2009). Numerical study of ground-motion differences between buried-rupturing and surface-rupturing earthquakes. Bulletin of the Seismological Society of America, 99(3), 1521–1537.  https://doi.org/10.1785/0120080193.CrossRefGoogle Scholar
  69. Pitilakis, K., Pitilakis, D., Rovithis, M., Roumelioti, Z., Manakou, M., Tsinidis, G., et al. (2014). January 26, 2014 and February 03, 2014 Earthquakes in Cephalonia, Greece, Prelimenary Report. Thessaloniki: Aristotle University.Google Scholar
  70. Pritchard, M. E., Simons, M., Rosen, P. A., Hensley, S., & Webb, F. H. (2002). Co-seismic slip from the 1995 July 30 M w = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophysical Journal International, 150(2), 362–376.  https://doi.org/10.1046/j.1365-246X.2002.01661.x.CrossRefGoogle Scholar
  71. Radiguet, M., Cotton, F., Manighetti, I., Campillo, M., & Douglas, J. (2009). Dependency of near-field ground motions on the structural maturity of the ruptured faults. Bulletin of the Seismological Society of America, 99(4), 2572–2581.  https://doi.org/10.1785/0120080340.CrossRefGoogle Scholar
  72. Rodríguez-Pérez, Q., & Ottemöller, L. (2014). Source study of the Jan Mayen transform fault strike-slip earthquakes. Tectonophysics, 628, 71–84.  https://doi.org/10.1016/j.tecto.2014.04.035.CrossRefGoogle Scholar
  73. Sachpazi, M., Hirn, A., Clément, C., Haslinger, F., Laigle, M., Kissling, E., et al. (2000). Western Hellenic subduction and Cephalonia transform: Local earthquakes and plate transport and strain. Tectonophysics, 319(4), 301–319.  https://doi.org/10.1016/S0040-1951(99)00300-5.CrossRefGoogle Scholar
  74. Sakkas, V., & Lagios, E. (2015). Fault modelling of the early-2014 M6 Earthquakes in Cephalonia Island (W. Greece) based on GPS measurements. Tectonophysics, 644–645, 184–196.  https://doi.org/10.1016/j.tecto.2015.01.010.CrossRefGoogle Scholar
  75. Saltogianni, V., Gianniou, M., Taymaz, T., Yolsal-Çevikbilen, S., & Stiros, S. (2015). Fault slip source models for the 2014 M w 6.9 Samothraki-Gökçeada earthquake (North Aegean Trough) combining geodetic and seismological observations. Journal of Geophysical Research, 120(12), 8610–8622.  https://doi.org/10.1002/2015JB012052.Google Scholar
  76. Saltogianni, V., & Stiros, S. (2015). A two-fault model of the 2003 Leucas (Aegean Arc) earthquake based on topological inversion of GPS data. Bulletin of the Seismological Society of America, 105(5), 2510–2520.  https://doi.org/10.1785/0120140355.CrossRefGoogle Scholar
  77. Saltogianni, V., Taymaz, T., Yolsal-Çevikbilen, S., Eken, T., Moschas, F., & Stiros, S. (2017). Fault model for the 2015 Leucas (Aegean Arc) earthquake: Analysis based on seismological and geodetic observations. Bulletin of the Seismological Society of America, 107(1), 433–444.  https://doi.org/10.1785/0120160080.CrossRefGoogle Scholar
  78. Sambridge, M., & Mosegaard, K. (2002). Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3), 1009.  https://doi.org/10.1029/2000RG000089.CrossRefGoogle Scholar
  79. Savage, J. C., & Prescott, W. H. (1978). Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research, 83, 3369–3376.  https://doi.org/10.1029/JB083iB07p03369.CrossRefGoogle Scholar
  80. Scordilis, E. M., Karakaisis, G. F., Karacostas, B. G., Panagiotopoulos, D. G., Comninakis, P. E., & Papazachos, B. C. (1985). Evidence for transform faulting in the Ionian Sea: The Cephalonia island earthquake sequence of 1983. Pure and Applied Geophysics, 123(3), 388–397.  https://doi.org/10.1007/BF00880738.CrossRefGoogle Scholar
  81. Shaw, B., & Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International, 181(2), 966–984.  https://doi.org/10.1111/j.1365-246X.2010.04551.x.Google Scholar
  82. Shi, B., & Brune, J. (2005). Characteristics of near-fault ground motions by dynamic thrust faulting: Two-dimensional lattice particle approaches. Bulletin of the Seismological Society of America, 95(6), 2525–2533.  https://doi.org/10.1785/0120040227.CrossRefGoogle Scholar
  83. Sibson, R., Ghisetti, F., & Ristau, J. (2011). Stress control of an evolving strike-slip fault system during the 2010–2011 Canterbury, New Zealand, earthquake sequence. Seismological Research Letters, 82(6), 824–832.  https://doi.org/10.1785/gssrl.82.6.824.CrossRefGoogle Scholar
  84. Sokos, E., Kiratzi, A., Gallovič, F., Zahradník, J., Serpetsidaki, A., Plicka, V., et al. (2015). Rupture process of the 2014 Cephalonia, Greece, earthquake doublet (M w6) as inferred from regional and local seismic data. Tectonophysics, 656, 131–141.  https://doi.org/10.1016/j.tecto.2015.06.013.CrossRefGoogle Scholar
  85. Sorel, D. (1976). Etude ntotectonique des iles Ioniennes de Cephalonie et de Zanthe et du I’Elide occidentale (Grece), These 3e cycle. Orsay: Universite Paris Sud.Google Scholar
  86. Stiros, S. C., & Blackman, D. J. (2014). Seismic coastal uplift and subsidence in Rhodes Island, Aegean Arc: Evidence from an uplifted ancient harbour. Tectonophysics, 611, 114–120.  https://doi.org/10.1016/j.tecto.2013.11.020.CrossRefGoogle Scholar
  87. Stiros, S. C., Pirazzoli, P. A., Laborel, J., & Laborel-Deguen, F. (1994). The 1953 Earthquake in Cephalonia (Western Hellenic Arc): Coastal uplift and halotectonic faulting. Geophysical Journal International, 117, 834–849.  https://doi.org/10.1111/j.1365-246X.1994.tb02474.x.CrossRefGoogle Scholar
  88. Stiros, S., & Saltogianni, V. (2016). Deformation of the ancient mole of Palairos (Western Greece) by faulting and liquefaction. Marine Geology, 380, 106–112.  https://doi.org/10.1016/j.margeo.2016.08.001.CrossRefGoogle Scholar
  89. Stock, C., & Smith, E. G. C. (2000). Evidence for different scaling of earthquake source parameters for large earthquakes depending on faulting mechanism. Geophysical Journal International, 143(1), 157–162.  https://doi.org/10.1046/j.1365-246x.2000.00225.x.CrossRefGoogle Scholar
  90. Theodoulidis, N., Hollender, F., Mariscal, A., Moiriat, D., Bard, P.-Y., Konidaris, A., et al. (2018). The ARGONET (Greece) seismic observatory: An accelerometric vertical array and its data. Seismological Research Letters, Early Edition..  https://doi.org/10.1785/0220180042.Google Scholar
  91. Theodoulidis, N., Karakostas, C., Lekidis, V., Makra, K., Margaris, B., Morfidis, K., et al. (2015). The Cephalonia, Greece, January 26 (M6.1) and February 3, 2014 (M6.0) earthquakes: Near-fault ground motion and effects on soil and structures. Bulletin of Earthquake Engineering, 14(1), 1–38.  https://doi.org/10.1007/s10518-015-9807-1.CrossRefGoogle Scholar
  92. Tselentis, G.-A., Sokos, E., Martakis, N., & Serpetsidaki, A. (2006). Seismicity and seismotectonics in Epirus, western Greece: Results from a microearthquake survey. Bulletin of the Seismological Society of America, 96(5), 1706–1717.CrossRefGoogle Scholar
  93. Underhill, J. R. (1988). Triassic evaporites and Plio-Quaternary diapirism in western Greece. Journal of the Geological Society, 145, 269–282.CrossRefGoogle Scholar
  94. Underhill, J. R. (1989). Late Cenozoic deformation of the Hellenide foreland, western Greece. Geological Society of America Bulletin, 101(5), 613–634.CrossRefGoogle Scholar
  95. Velaj, T., Davison, I., Serjani, A., & Alsop, I. (1999). Thrust tectonics and the role of evaporites in the Ionian Zone of the Albanides. AAPG Bulletin, 83(9), 1408–1425.Google Scholar
  96. Wang, R., Parolai, S., Ge, M., Jin, M., Walter, T. R., & Zschau, J. (2012). The 2011 M w 9.0 Tohoku earthquake: Comparison of GPS and strong-motion data. Bulletin of the Seismological Society of America.  https://doi.org/10.1785/0120110264.Google Scholar
  97. Williams, S. D. P. (2003). The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. Journal of Geodesy, 76(9/10), 483–494.  https://doi.org/10.1007/s00190-002-0283-4.CrossRefGoogle Scholar
  98. Yolsal-Çevikbilen, S., & Taymaz, T. (2012). Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536(537), 61–100.  https://doi.org/10.1029/2007JB004943.CrossRefGoogle Scholar
  99. Zahradník, J., Serpetsidaki, A., Sokos, E., & Tselentis, G.-A. (2005). Iterative deconvolution of regional waveforms and a double-event interpretation of the 2003 Lefkada earthquake, Greece. Bulletin of the Seismological Society of America, 95(1), 159–172.  https://doi.org/10.1785/0120040035.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of PatrasRionGreece

Personalised recommendations