Pure and Applied Geophysics

, Volume 175, Issue 10, pp 3653–3670 | Cite as

Assessment and Adaptive Correction of Observations in Atmospheric Sounding Channels of the Satellite Microwave Radiometer MTVZA-GY

  • Dmitry Gayfulin
  • Michael TsyrulnikovEmail author
  • Alexander Uspensky


The microwave radiometer MTVZA-GY on board the Russian polar orbiting meteorological satellite Meteor-M N2 is briefly described. Errors and biases in antenna brightness temperatures are documented. Observation errors are found to be dependent on the solar angles. An adaptive bias correction technique for MTVZA-GY antenna temperatures is motivated and developed. The technique accounts for the solar angles and sequentially assimilates observed minus simulated radiances in a perpetual 24 h cycle in order to estimate up-to-date correction coefficients defined to be functions of the zenith and azimuth solar angles. The simulated radiances are computed by the RTTOV radiative transfer model from three-dimensional numerical weather prediction fields. The correction technique is implemented for atmospheric temperature and humidity sounding channels of MTVZA-GY. The corrected observations are shown to be significantly more accurate as compared with raw antenna temperatures and with observations that undergo simpler and more traditional corrections. The accuracy of corrected MTVZA-GY observations is compared with the accuracy of AMSU-A and MHS data.


Satellite observations microwave radiances bias correction data assimilation 



The authors would like to thank I. V. Cherny for valuable discussions on various MTVZA-GY calibration issues. We are indebted to P. Rayer for extending the RTTOV model to include MTVZA-GY. S. A. Uspensky and N. S. Ekimov kindly provided raw data files and helped resolve technical issues with the files. We are also grateful to P. I. Svirenko, who provided us with the sparse-matrix conjugate gradient solver from the meteorological data assimilation system of the Hydrometcenter of Russia. The very helpful comments made by the two anonymous reviewers are gratefully acknowledged.


  1. Asmus, V., Zagrebaev, V., Makridenko, L., Milekhin, O., Solovyev, V., Uspenskii, A., et al. (2014). Meteorological satellites based on Meteor-M polar orbiting platform. Russian Meteorology and Hydrology, 39(12), 787–794.CrossRefGoogle Scholar
  2. Bell, W., English, S. J., Candy, B., Atkinson, N., Hilton, F., Baker, N., et al. (2008). The assimilation of SSMIS radiances in numerical weather prediction models. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 884–900.CrossRefGoogle Scholar
  3. Cherny, I. V., Mitnik, L. M., Mitnik, M. L., Uspensky, A. B., & Streltsov, A. M. (2010). On-orbit calibration of the Meteor-M microwave imager/sounder. In IEEE International geoscience and remote sensing symposium (IGARSS), pp. 558–561. IEEE.Google Scholar
  4. Daley, R. (1997). Atmospheric data assimilation. Journal of the Meteorological Society of Japan Ser II, 75(1), 319–329.CrossRefGoogle Scholar
  5. Dee, D. P., & Uppala, S. (2009). Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quarterly Journal of the Royal Meteorological Society, 135(644), 1830–1841.CrossRefGoogle Scholar
  6. Ferraro, R. R., & Marks, G. F. (1995). The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. Journal of Atmospheric and Oceanic Technology, 12(4), 755–770.CrossRefGoogle Scholar
  7. Gayfulin, D., Tsyrulnikov, M., Uspensky, A., Kramchaninova, E., Uspensky, S., Svirenko, P., et al. (2017). The usage of MTVZA-GY a satellite microwave radiometer observations in the data assimilation system of the Hydrometcenter of Russia. Russian Meteorology and Hydrology, 42(9), 564–573.CrossRefGoogle Scholar
  8. Geer, A. J., Bauer, P., & Bormann, N. (2010). Solar biases in microwave imager observations assimilated at ECMWF. IEEE Transactions on Geoscience and Remote Sensing, 48(6), 2660–2669.CrossRefGoogle Scholar
  9. Gorin, V. E., & Tsyrulnikov, M. D. (2011). Estimation of multivariate observation-error statistics for AMSU-A data. Monthly Weather Review, 139(12), 3765–3780.CrossRefGoogle Scholar
  10. Gorobets, N., Cherny, I., Chernyavsky, G., & Barsukov, I. (2007). Microwave imager/sounder MTVZA-GY of spacecraft Meteor-M. In: The sixth international Kharkov symposium on physics and engineering of microwaves, millimeter and submillimeter waves, June 25–30, 2007, vol. 2, pp. 772–774. IEEE.Google Scholar
  11. Haggerty, J. A., & Curry, J. A. (2001). Variability of sea ice emissivity estimated from airborne passive microwave measurements during FIRE SHEBA. Journal of Geophysical Research Atmospheres, 106(D14), 15265–15277.CrossRefGoogle Scholar
  12. Harris, B. A., & Kelly, G. (2001). A satellite radiance-bias correction scheme for data assimilation. Quarterly Journal of the Royal Meteorological Society, 127, 1453–1468.CrossRefGoogle Scholar
  13. Kunkee, D. B., Poe, G. A., Boucher, D. J., Swadley, S. D., Hong, Y., Wessel, J. E., et al. (2008). Design and evaluation of the first special sensor microwave imager/sounder. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 863–883.CrossRefGoogle Scholar
  14. Lu, Q., & Bell, W. (2014). Characterizing channel center frequencies in AMSU-A and MSU microwave sounding instruments. Journal of Atmospheric and Oceanic Technology, 31(8), 1713–1732.CrossRefGoogle Scholar
  15. McNally, A. (2014). The impact of satellite data on global NWP. In Proceedings of the ECMWF seminar on use of satellite observations in NWP, pp. 8–12.Google Scholar
  16. Prigent, C., Aires, F., & Rossow, W. B. (2006). Land surface microwave emissivities over the globe for a decade. Bulletin of the American Meteorological Society, 87(11), 1573–1584.CrossRefGoogle Scholar
  17. Randall, D. (2012). Atmosphere, clouds, and climate. Princeton: Princeton University Press.Google Scholar
  18. Saunders, R. W., Matricardi, M., & Brunel, P. (1999). An improved fast radiative transfer model for assimilation of satellite radiance observations. Quarterly Journal of the Royal Meteorological Society, 125, 1407–1425.CrossRefGoogle Scholar
  19. Swadley, S. D., Poe, G. A., Bell, W., Hong, Y., Kunkee, D. B., McDermid, I. S., et al. (2008). Analysis and characterization of the SSMIS upper atmosphere sounding channel measurements. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 962–983.CrossRefGoogle Scholar
  20. Uspensky, S., Kramchaninova, E., Uspensky, A., Poli, P., English, S., and Lupu, C. (2015). An initial assessment of microwave imager/sounder MTVZA-GY data from Meteor-M N2 satellite. In International TOVS study conference ITSC-XX: Lake Geneva, Wisconsin, USA, 28 October–3 November 2015. IEEE.Google Scholar
  21. Uspensky, A., Asmus, V., Kozlov, A., Kramchaninova, E., Streltsov, A., Chernyavsky, G., et al. (2017). Absolute calibration of the MTVZA-GY microwave radiometer atmospheric sounding channels. Izvestiya Atmospheric and Oceanic Physics, 53(9), 1192–1204. (Original Russian text published in Issledovanie Zemli iz Kosmosa, 2016, N5, 57–70).CrossRefGoogle Scholar
  22. Weng, F., Zhao, L., Ferraro, R. R., Poe, G., Li, X., & Grody, N. C. (2003). Advanced microwave sounding unit cloud and precipitation algorithms. Radio Science, 38(4), MAR33-1 - MAR33-13.CrossRefGoogle Scholar
  23. Weng, F., Zou, X., Wang, X., Yang, S., & Goldberg, M. (2012). Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications. Journal of Geophysical Research Atmospheres, 117, D19112.Google Scholar
  24. Wessel, J., Farley, R. W., Fote, A., Hong, Y., Poe, G. A., Swadley, S. D., et al. (2008). Calibration and validation of DMSP SSMIS lower atmospheric sounding channels. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 946–961.CrossRefGoogle Scholar
  25. Zou, X., Lin, L., & Weng, F. (2014). Absolute calibration of ATMS upper level temperature sounding channels using GPS RO observations. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1397–1406.CrossRefGoogle Scholar
  26. Zou, C.-Z., & Wang, W. (2011). Intersatellite calibration of AMSU-A observations for weather and climate applications. Journal of Geophysical Research Atmospheres, 116, D23113.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dmitry Gayfulin
    • 1
  • Michael Tsyrulnikov
    • 1
    Email author
  • Alexander Uspensky
    • 2
  1. 1.Hydrometeorological Center of RussiaMoscowRussia
  2. 2.State Research Center “Planeta”MoscowRussia

Personalised recommendations