Advertisement

Analyzing the Mediterranean Water Cycle Via Satellite Data Integration

  • Victor Pellet
  • Filipe Aires
  • Annarita Mariotti
  • Diego Fernández-Prieto
Article
  • 29 Downloads

Abstract

The water cycle components are being retrieved by an increasing number of satellite missions. However, the monitoring of the water cycle by satellite Earth Observations is still a challenge. Data sets suffer from numerous systematic and random errors and they are often not coherent with each other. We focus here on the Mediterranean basin, one of the regions most sensitive to climate change. A satellite-based analysis of the water cycle is undertaken using a collection of available satellite data sets. Our satellite data set combination uses a simple bias correction and weighted average, and provides a better water budget closure results than any raw satellite data set. Our almost purely satellite data set allows to better describe the full water cycle, not only over the continents, but also in the atmosphere and over the ocean. The limitation/possibilities of this satellite multi-component data set are described: (1) although improved, the water cycle is still not closed by satellite data and the satellite community should focus on this issue, (2) our combined data set shows good coherency with the ERA-I reanalysis which is the reference so far, both in terms of seasonal climatology and long-term trends. This means that, even if the water budget is not yet closed by satellite data, our monitoring of the water cycle using satellite observations is improving, even over complex regions such as the Mediterranean basin.

Keywords

Mediterranean sea water cycle satellite observation merging techniques 

Notes

Acknowledgements

We would like to thank the ESA (European Space Agency) and the STSE for funding the “Water Cycle Observation Multi-mission Strategy For Mediterranean region” project (wacmosmed.estellus.fr). We also thank colleagues for providing the data sets used in this study: Wouter Dorigo, from Wien University, for the EO data sets; Jan Polcher from LMD for the ORCHIDEE outputs; Ludwig Wolgang from CEFREM for the coastal discharge database; Gabriel Jorda from EMEDEA for the Gibraltar Netflow product. We are grateful for the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We would like to thank the WACMOS-Med partners for the interesting related discussions and Phillipe Drobinsky for his support to WACMOS-Med and his role in the HYMEX project. We also thank the anonymous reviewers who help improving the manuscript. We finally would like to particularly thank Simon Munier for his help along this study.

References

  1. Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979Present). Journal of Hydrometeorology, 4(6):1147–1167. ISSN 1525-755X. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.Google Scholar
  2. Aires, F. (2014). Combining datasets of satellite-retrieved products. Part I: Methodology and water budget closure. Journal of Hydrometeorology , 15(4), 1677–1691. ISSN 1525-755X.  https://doi.org/10.1175/JHM-D-13-0148.1.
  3. Ashouri, H., Hsu, K-L., Sorooshian, S., Braithwaite, D.K., Knapp, K.R., Dewayne Cecil L., Nelson, B.R., Prat, O.P., Ashouri, H., Hsu, K-L., Sorooshian, S., Braithwaite, D.K., Knapp, K.R., & Prat, O.P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83. ISSN 0003-0007.  https://doi.org/10.1175/BAMS-D-13-00068.1.
  4. Barella-Ortiz, A., Polcher, J.,  Tuzet, A., & Laval, K. (2013). Potential evaporation estimation through an unstressed surface-energy balance and its sensitivity to climate change. Hydrology and Earth System Sciences, 17(11), 4625–4639. ISSN 1607-7938.  https://doi.org/10.5194/hess-17-4625-2013.
  5. Biancale, R., Balmino, G., Bruinsma, S., Lemoine, J., Perosanz, F., Marty, J., et al. (2004). Development and assessment of GRACE derived gravity field monthly solutions. American Geophysical Union, Fall Meeting 2004, abstract id. G23A-02.Google Scholar
  6. Curry, J.A., Bentamy, A., Bourassa, M.A., Bourras, D., Bradley, E.F., Brunke, M., Castro, S., Chou, S.H., Clayson, C.A., Emery, W.J.,  Eymard, L., Fairall, C.W., Kubota, M., Lin, B., Perrie, W., Reeder, R.A., Renfrew, I.A., Rossow, W.B., Schulz, J., Smith, S.R., Webster, P.J., Wick, G.A., Zeng, X., Curry, J.A., Bentamy, A., Bourassa, M.A., Bourras, D., Bradley, E.F., Brunke, M., Castro, S., Chou, S.H., Clayson, C.A., Emery, W.J., Eymard, L., Fairall, C.W., Kubota, M., Lin, B., Perrie, W., Reeder, R.A., Renfrew, I.A., Rossow, W.B., Schulz, J., Smith, S.R., Webster, P.J., Wick, G.A., & Zeng, X. (2004). SEAFLUX. Bulletin of the American Meteorological Society , 85(3), 409–424. ISSN 0003-0007.  https://doi.org/10.1175/BAMS-85-3-409.
  7. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S.,  Andrae, U., Balmaseda, M.A.,Balsamo, G.,  Bauer, P.,  Bechtold, P., Beljaars, A.C.M.,  van de Berg, L., Bidlot, J.,  Bormann, N.,  Delsol, C.,  Dragani, R., Fuentes, M., Geer, A.J.,  Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L.,  Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., & Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Societ, 137(656), 553–597. ISSN 00359009.  https://doi.org/10.1002/qj.828.
  8. Ducharne, A., Golaz, C., Leblois, E., Laval, K., Polcher, J., Ledoux, E., & de Marsily, G. (2003). Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM. Journal of Hydrology, 280(1), 207–228. ISSN 00221694.  https://doi.org/10.1016/S0022-1694(03)00230-0.
  9. Eicker, A., Forootan, E., Springer, A., & Longuevergne, L. (2016). Does GRACE see the terrestrial water cycle ’intensifying’ ? Journal of Geophysical Research, 121(2), 733–745.Google Scholar
  10. Prieto, D.F., & van Oevelen, E.P. (2012). ESA-gewex earth observation and water cycle science priorities. Hydrology and Earth System Sciences Google Scholar
  11. Gosset, M., Viarre, J., Quantin, G., & Alcoba, M. (2013). Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Quarterly Journal of the Royal Meteorological Society, 139(673), 923–940. ISSN 00359009.  https://doi.org/10.1002/qj.2130.
  12. Guo, H., Chen, S., Bao, A., Hu, J., Gebregiorgis, A., Xue, X., & Zhang, X. (2015) Inter-comparison of high-resolution satellite precipitation products over central Asia. Remote Sensing, 7(12), 7181–7211. ISSN 2072-4292.  https://doi.org/10.3390/rs70607181.
  13. Harzallah, A., Jordà, G., Dubois, C., Sannino, G., Carillo, A., Li, L., Arsouze, T., Cavicchia, L., Beuvier, J., & Akhtar, N. (2016). Long term evolution of heat budget in the Mediterranean Sea from Med-CORDEX forced and coupled simulations. Climate Dynamics. ISSN 0930-7575.  https://doi.org/10.1007/s00382-016-3363-5.
  14. Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D., & New, M. (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 19502006. Journal of Geophysical Research, 113.  https://doi.org/10.1029/2008JD010201
  15. Hirschi, M., Viterbo, P, & Seneviratne, S.I. (2006). Basin-scale water-balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis. Geophysical Research Letters, 33(21), L21401. ISSN 0094-8276.  https://doi.org/10.1029/2006GL027659.
  16. Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., Stocker, E.F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55. ISSN 1525-755X.  https://doi.org/10.1175/JHM560.1.
  17. IPCC. (2014). IPCC, 2014: Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [core writing team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva: IPCC, Technical report.Google Scholar
  18. Jordà, G., Sánchez-Román, A., & Gomis, D. (2016). Reconstruction of transports through the Strait of Gibraltar from limited observations. Climate Dynamics. ISSN 0930-7575.  https://doi.org/10.1007/s00382-016-3113-8.
  19. Jones, P.W. (1999). First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 2204–2210.  https://doi.org/10.1175/1520-0493(1999).CrossRefGoogle Scholar
  20. Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: a method that produces global precipitation estimates from data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.CrossRefGoogle Scholar
  21. Kidd, C., Bauer, P., Turk, J., Huffman, G.J., Joyce, R., Hsu, K.-L., Braithwaite, D., Kidd, C., Bauer, P., Turk, J., Huffman, G.J., Joyce, R., Hsu, K.-L., & Braithwaite, D. (2012). Intercomparison of high-resolution precipitation products over Northwest Europe. Journal of Hydrometeorology, 13(1), 67–83. ISSN 1525-755X.  https://doi.org/10.1175/JHM-D-11-042.1.
  22. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. eschweizerbartxxx. Meteorologische Zeitschrift, 15(3), 259–263.  https://doi.org/10.1127/0941-2948/2006/0130.
  23. Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48, W04531.  https://doi.org/10.1029/2011WR011453.CrossRefGoogle Scholar
  24. Lawford, R.G., Roads, J., Lettenmaier, D.P., & Arkin, P. (2007). GEWEX contributions to large-scale hydrometeorology. Journal of Hydrometeorology, 8.  https://doi.org/10.1175/JHM608.1.
  25. L’Ecuyer, T.S., Beaudoing, H.K., Rodell, M., Olson, W., Lin, B., Kato, S., Clayson, C.A., Wood, E., Sheffield, J., Adler, R., Huffman, G., Bosilovich, M., Gu, G., Robertson, F., Houser, P.R., Chambers, D., Famiglietti, J.S., Fetzer, E., Liu, W.T.,  Gao, X., Schlosser, C.A., Clark, E., Lettenmaier, D.P., Hilburn, K., L’Ecuyer, T.S., Beaudoing, H.K., Rodell, M., Olson, W., Lin, B., Kato, S., Clayson, C.A., Wood, E., Sheffield, J., Adler, R., Huffman, G., Bosilovich, M., Gu, G., Robertson, F., Houser, P.R., Chambers, D., Famiglietti, J.S., Fetzer, E., Liu, W.T., Gao, X., Schlosser, C.A., Clark, E., Lettenmaier, D.P., & Hilburn, K. (2015). The observed state of the energy budget in the early twenty-first century. Journal of Climate, 28(21), 8319–8346. ISSN 0894-8755.  https://doi.org/10.1175/JCLI-D-14-00556.1.
  26. Levizzani, V., Laviola, S., & Cattani, E. (2011). Detection and measurement of snowfall from space. Remote Sensing, 3(1), 145–166. ISSN 20724292.  https://doi.org/10.3390/rs3010145.
  27. Li, L.Z.X. (2006). Atmospheric GCM response to an idealized anomaly of the Mediterranean sea surface temperature. Climate Dynamics, 27(5):543–552. ISSN 0930-7575.  https://doi.org/10.1007/s00382-006-0152-6.
  28. Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., et al. (2006). The Mediterranean climate: An overview of the main characteristics and issues. Developments in Earth and Environmental Sciences., 4, 1–26.CrossRefGoogle Scholar
  29. Llasat, M.C., Marcos, R., Turco, M., Gilabert, J., & Llasat-Botija, M. (2016). Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. Journal of Hydrology, 541, 24–37. ISSN 00221694.  https://doi.org/10.1016/j.jhydrol.2016.05.040.
  30. Longuevergne, L., Scanlon, B.R., & Wilson, C.R. (2010) GRACE hydrological estimates for small basins: Evaluating processing approaches on the high plains aquifer. Water Resources Research, 46.Google Scholar
  31. Ludwig, W., Dumont, E., Meybeck, M., & Heussner, S. (2009). River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Progress in Oceanography, 80(3–4), 199–217. ISSN 00796611.  https://doi.org/10.1016/j.pocean.2009.02.001.
  32. Maheras, P., Tolika, K., Anagnostopoulou, C., Vafiadis, M., Patrikas, I., & Flocas, H. (2004). On the relationships between circulation types and changes in rainfall variability in Greece. International Journal of Climatology, 24(13), 1695–1712. ISSN 0899-8418.  https://doi.org/10.1002/joc.1088.
  33. Margat, J. (2004). Programme des Nations Unies pour l’environnement Plan d’Action pour la Mediterranee: Situation et perspectives MAP Technical Report Series No . 158 PNUE / PAM. (158).Google Scholar
  34. Mariotti, A. (2010). Recent changes in the mediterranean water cycle: A pathway toward long-term regional hydroclimatic change? Journal of Climate, 23(6), 1513–1525. ISSN 08948755.  https://doi.org/10.1175/2009JCLI3251.1.
  35. Mariotti, A., Vittoria Struglia, M., Zeng, N., & Lau, K.-M. (2002). The Hydrological Cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. Journal of Climate, 15(13), 1674–1690. ISSN 0894-8755. https://doi.org/10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2.Google Scholar
  36. Mariotti, A., Zeng,N., Yoon, J-H. , Artale, V., Navarra, A., Alpert, P., & Li, L.Z.X (2008). Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environmental Research Letters, 3(4), 044001. ISSN 1748-9326.  https://doi.org/10.1088/1748-9326/3/4/044001.
  37. Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Férnandez-Prieto, D., Beck, H.E, Dorigo, W.A., Verhoest, N.E.C. (2016). GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development Discussion, 1–36. ISSN 1991-962X.  https://doi.org/10.5194/gmd-2016-162.
  38. Mu, Q., Zhao, M.,&Running S.W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800. ISSN 00344257.  https://doi.org/10.1016/j.rse.2011.02.019.
  39. Mueller, B., Hirschi, M., & Seneviratne, S.I. (2011). New diagnostic estimates of variations in terrestrial water storage based on ERA-Interim data. Hydrological Processes, 25(7), 996–1008. ISSN 08856087.  https://doi.org/10.1002/hyp.7652.
  40. Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande, P., & Pan, M. (2014). Combining data sets of satellite-retrieved products for basin-scale water balance study: 2. Evaluation on the Mississippi Basin and closure correction model. Journal of Geophysical Research, 119(21), 12100–12116. ISSN 2169897X.  https://doi.org/10.1002/2014JD021953.
  41. Pan, M., & Wood, E.F. (2006). Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman Filter. Journal of Hydrometeorology, 7(3), 534–547. ISSN 1525-755X.  https://doi.org/10.1175/JHM495.1.
  42. Pan, M., Sahoo, A.K., Troy, T.J., Vinukollu, R.K., Sheffield, J., & Wood, E.F. (2012). Multisource estimation of long-term terrestrial water budget for major global river basins. Journal of Climate, 25(9), 3191–3206. ISSN 08948755.  https://doi.org/10.1175/JCLI-D-11-00300.1.
  43. Philandras, C.M., Nastos, P.T., Kapsomenakis, J., Douvis, K.C., Tselioudis, G., & Zerefos, C.S. (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences, 11(12), 3235–3250. ISSN 15618633.  https://doi.org/10.5194/nhess-11-3235-2011.
  44. Pike, J.G. (1964). The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology, 2(2), 116–123. ISSN 00221694.  https://doi.org/10.1016/0022-1694(64)90022-8
  45. Polcher, J., Mcavaney, B., Viterbo, P., Gaertner,M.-A., Hahmann, A., Mahfouf, J.-F., Noilhan, J., Phillips, T., Pitman, A ., Schlosser, C.A., Schulz, J.-P., Timbal, B., Verseghy, D., & Xue, Y. (1998). A proposal for a general interface between land surface schemes and general circulation models. Global and Planetary Change, 19, 261–276.Google Scholar
  46. Roads, J., Kanamitsu, M., Stewart, R., Roads, J., Kanamitsu, M., & Stewart, R. (2002a). CSE Water and energy budgets in the NCEPDOE reanalysis II. Journal of Hydrometeorology, 3(3), 227–248. ISSN 1525-755X. https://doi.org/10.1175/1525-7541(2002)003<0227:CWAEBI>2.0.CO;2.Google Scholar
  47. Roads, J., Lawford, R., Bainto, E., Berbery, E., Chen, S., Fekete, B., Gallo, K., Grundstein, A., Higgins, W., Kanamitsu, M., Krajewski, W., Lakshmi, V., Leathers, D., Lettenmaier, D., Luo, L., Maurer, E., Meyers, T., Miller, D., Mitchell, K., Mote, T., Pinker, R., Reichler, T., Robinson, D., Robock, A., Smith, J., Srinivasan, G., Vinnikov, K.,  Vonder Haar, T., Vorosmarty, C., Williams, S., & Yarosh, E. (2002b). GCIP water and energy budget synthesis (WEBS). Journal of Geophysical Research Google Scholar
  48. Rodell, M., Beaudoing, H.K., L’Ecuyer, T.S., Olson, W.S., Famiglietti, J.S., Houser, P.R., Adler, R., Bosilovich, M.G., Clayson, C.A., Chambers, D., Clark, E., Fetzer, E.J., Gao, X., Gu, G., Hilburn, K., Huffman, G.J., Lettenmaier, D.P., Liu, W.T., Robertson, F.R., Schlosser, C.A. , Sheffield, J., & Wood, E.F. (2015). The observed state of the water cycle in the early 21st century. Journal of Climate, 8289–8318. ISSN 0894-8755.  https://doi.org/10.1175/JCLI-D-14-00555.1.
  49. Schneider, N., Schröder, M., Lindstrot, R., Preusker, R., & Stengel, M. (2013). ESA DUE GlobVapour ESA DUE GlobVapour Consortium. ESA DUE GlobVapour Water Vapor Products: Validation, 1531, 484–487.  https://doi.org/10.1063/1.4804812.
  50. Senay, G.B., Asante, K., & Artan, G. (2009). Water balance dynamics in the Nile Basin. Hydrological Processes, 23(26):n/a–n/a. ISSN 08856087.  https://doi.org/10.1002/hyp.7364.
  51. Seneviratne, S.I., Lüthi, D., Litschi, M., & Schär, C. (2006). Landatmosphere coupling and climate change in Europe. Nature, 443(7108):205–209. ISSN 0028-0836.  https://doi.org/10.1038/nature05095.
  52. Sheffield, J., Ferguson, C.R., Troy, T.J., Wood, E. F., & McCabe, M.F. (2009). Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36(7):1–5. ISSN 00948276.  https://doi.org/10.1029/2009GL037338.
  53. Soto-Navarro, J., Criado-Aldeanueva, F., García-Lafuente, J., & Sánchez-Román, A. (2010). Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. J. Geophys. Res. 115(C10):C10023. ISSN 0148-0227.  https://doi.org/10.1029/2010JC006302.
  54. Stopa, J.E. & Cheung, K.F. (2014). Intercomparison of wind and wave data from the ECMWF reanalysis Interim and the NCEP climate forecast system reanalysis. Ocean Model, 75, 65–83. ISSN 14635003.  https://doi.org/10.1016/j.ocemod.2013.12.006.
  55. Struglia, M.V., Mariotti, A., & Filograsso, A. (2004). River discharge into the Mediterranean sea: Climatology and aspects of the observed variability. Journal of Climate, 17(24), 4740–4751. ISSN 08948755.  https://doi.org/10.1175/JCLI-3225.1.
  56. Sun, B., Yu, L., Weller, R.A. (2003). Comparisons of surface meteorology and turbulent heat fluxes over the Atlantic: NWP model analyses versus moored buoy observations*. Journal of Climate, 16(4), 679–695. ISSN 0894-8755. https://doi.org/10.1175/1520-0442(2003)016<0679:COSMAT>2.0.CO;2.Google Scholar
  57. Tapley, B.D., Bettadpur, S., Watkins, M., & Reigber, C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31.  https://doi.org/10.1029/2004GL019920.
  58. Trenberth, K.E., & Fasullo, J.T. (2013). Regional energy and water cycles: Transports from ocean to land. Journal of Climate, 26.  https://doi.org/10.1175/JCLI-D-13-00008.1.
  59. Trenberth, K.E., Smith, L., Qian, T., Dai, A., & Fasullo, J. (2007). Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology, 8.  https://doi.org/10.1175/JHM600.1.
  60. Trenberth, K.E., Fasullo, J.T., & Mackaro, J. (2011). Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. Journal of Climate, 24.  https://doi.org/10.1175/2011JCLI4171.1.
  61. Turk, J.T., Mostovoy, G.V., & Anantharaj, V. (2010). The NRL-blend high resolution precipitation product and its application to land surface hydrology. In Satell. Rainfall Appl. Surf. Hydrol., pp. 85–104. Netherlands: Springer.  https://doi.org/10.1007/978-90-481-2915-7-6.
  62. Watkins, M.M., Wiese, D.N., Yuan, D.-N., Boening, C., & Landerer, F.W. (2015). Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671. ISSN 21699313.  https://doi.org/10.1002/2014JB011547.
  63. Wood, E.F., & Schaepman, M. (2009). Continental and global-scale terrestrial water and energy budgets using remote sensing observations. Seminar Google Scholar
  64. Wu, H., Kimball, J.S., Mantua, N., Stanford, J. (2011). Automated upscaling of river networks for macroscale hydrological modeling. Water Resources Research, 47(3):n/a–n/a. ISSN 00431397.  https://doi.org/10.1029/2009WR008871.
  65. Tugrul Yilmaz, M., DelSole, T., & Houser, P.R. (2011). Improving land data assimilation performance with a water budget constraint. Journal of Hydrometeorology, 12(5), 1040–1055. ISSN 1525-755X.  https://doi.org/10.1175/2011JHM1346.1.
  66. Zektser, I.S., Loaiciga, H.A. (1993). Groundwater fluxes in the global hydrologic cycle: Past, present and future. Journal of Hydrology, 144(1–4), 405–427. ISSN 00221694.  https://doi.org/10.1016/0022-1694(93)90182-9.
  67. Zhang, K., Kimball, J.S., Nemani, R.R., & Running, S.W. (2010). A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research, 46 (9):n/a–n/a. ISSN 00431397.  https://doi.org/10.1029/2009WR008800.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LERMA, Observatoire de ParisParisFrance
  2. 2.EstellusParisFrance
  3. 3.NOAA/OAR, Climate Program OfficeSilver SpringUSA
  4. 4.European Space Agency (ESA-ESRIN)RomeItaly

Personalised recommendations