Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 10, pp 3639–3652 | Cite as

Correct Boundary Conditions for the High-Resolution Model of Nonlinear Acoustic-Gravity Waves Forced by Atmospheric Pressure Variations

  • Yu. A. Kurdyaeva
  • S. P. Kshevetskii
  • N. M. Gavrilov
  • S. N. Kulichkov
Article
  • 37 Downloads

Abstract

Currently, an international network of operating high-resolution microbarographs was established to record wave-induced pressure variations at the Earth’s surface. Based on these measurements, simulations are performed to analyze the characteristics of waves corresponding to the observed variations of atmospheric pressure. Such a mathematical problem involves a set of primitive nonlinear hydrodynamic equations considering lower boundary conditions in the form of pressure variations at the Earth’s surface. Selection of upward propagating acoustic-gravity waves (AGWs) generated or reflected at the Earth’s surface requires the Neumann boundary conditions involving the vertical gradients of vertical velocity at the lower boundary. To analyze the correctness of the mathematical problem, linearized equations are used for small-surface wave amplitudes excited near the ground. Using the relation for wave energy, it is proven that the solution of the boundary problem based on the nondissipative approximation is uniquely determined by the variable pressure field at the Earth’s surface. The respective dissipative problem has also a unique solution with the appropriate choice of lower boundary conditions for temperature and velocity components. To test the numerical algorithm, solutions of the linearized equations for AGW modes are used. Developed boundary conditions are implemented into the model describing acoustic-gravity wave propagation from the surface atmospheric pressure source. Atmospheric waves propagating from the observed surface pressure variations to the upper atmosphere are simulated using the obtained algorithms and the computer codes.

Notes

Acknowledgements

Numerical simulations of the project were supported by the Russian Basic Research Foundation (Grant 17-05-00574) and the microbarograph surface pressure measurements by the Russian Scientific Foundation (Grant 14-47-00049). N. Gavrilov and S. Kshevetskii formulated the problem. Yu. Kurdyaeva and S. Kshevetskii proved the main theorems. S. Kshevetskii and N. Gavrilov developed the model for simulations. Yu. Kurdyaeva performed simulations. S. Kulichkov obtained the experimental data of the pressure variations with high-sensitive microbarographs.

Supplementary material

24_2018_1906_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. Alexander, M., May, P., & Beres, J. (2004). Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. Journal of Geophysical Research, 109, D20S04. (1–11).CrossRefGoogle Scholar
  2. Andreassen, O., Hvidsten, O., Fritts, D., & Arendt, S. (1998). Vorticity dynamics in a breaking internal gravity wave, Part 1 Initial instability evolution. Journal of Fluid Mechanics, 367, 27–46.CrossRefGoogle Scholar
  3. AtmoSym: A multi-scale atmosphere model from the Earth’s surface up to 500 km. http://atmos.kantiana.ru. 2016. Accessed 10 Apr 2017.
  4. Babkovskaia, N., Haugen, N., & Brandenburg, A. (2011). A high-order public domain code for direct numerical simulations of turbulent combustion. Journal of Computational Physics, 230, 1–12.CrossRefGoogle Scholar
  5. Baker, D., & Schubert, G. (2000). Convectively generated internal gravity waves in the lower atmosphere of Venus, Part II mean wind shear and wave–mean flow interaction. Journal of the Atmospheric Sciences, 57, 200–215.CrossRefGoogle Scholar
  6. Balachandran, N. K. (1980). Gravity waves from thunderstorms. Monthly Weather Review, 108, 804–816.CrossRefGoogle Scholar
  7. Banks, P. M., & Kockarts, G. (1973). Aeronomy, Part B. New York: Elsevier.Google Scholar
  8. Beer, T. (1974). Atmospheric waves. London: Adam Hilder.Google Scholar
  9. Blanc, E., Farges, T., Le Pichon, A., & Heinrich, P. (2014). Ten year observations of gravity waves from thunderstorms in western Africa. Journal of Geophysical Research: Atmospheres, 119, 6409–6418.  https://doi.org/10.1002/2013JD020499.CrossRefGoogle Scholar
  10. Brekhovskikh, L., & Godin, O. (1990). Acoustics of layered media. Berlin: Springer.CrossRefGoogle Scholar
  11. Courant, R., & Hilbert, D. (1962). Methods of mathematical physics. 2. Partial differential equations. Singapore: Wiley-VCH GmbH & Co.Google Scholar
  12. Dalin, P., Gavrilov, N., Pertsev, N., Perminov, V., Pogoreltsev, A., Shevchuk, N., et al. (2016). A case study of long gravity wave crests in noctilucent clouds and their origin in the upper tropospheric jet stream. Journal of Geophysical Research: Atmospheres, 121, 1402–14116.  https://doi.org/10.1002/2016jd025422.CrossRefGoogle Scholar
  13. Fovell, R., Durran, D., & Holton, J. R. (1992a). Numerical simulation of convectively generated stratospheric gravity waves. Journal of the Atmospheric Sciences, 47, 1042.Google Scholar
  14. Fovell, R., Durran, D., & Holton, J. R. (1992b). Numerical simulation of convectively generated stratospheric gravity waves. Journal of the Atmospheric Sciences, 47, 1427–1442.CrossRefGoogle Scholar
  15. Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41, 1003.  https://doi.org/10.1029/2001RG000106.CrossRefGoogle Scholar
  16. Fritts, D. C., & Garten, J. F. (1996). Wave breaking and transition to turbulence in stratified shear flows. Journal of the Atmospheric Sciences, 53, 1057–1085.CrossRefGoogle Scholar
  17. Fritts, D. C., Vadas, S. L., Wan, K., & Werne, J. A. (2006). Mean and variable forcing of the middle atmosphere by gravity waves. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 247–265.CrossRefGoogle Scholar
  18. Gavrilov, N. M. (2013). Estimates of turbulent diffusivities and energy dissipation rates from satellite measurements of spectra of stratospheric refractivity perturbations. Atmospheric Chemistry and Physics, 13, 12107–12116.  https://doi.org/10.5194/acp-13-12107-2013.CrossRefGoogle Scholar
  19. Gavrilov, N. M. & Fukao, S. (1999). A comparison of seasonal variations of gravity wave intensity observed by the MU radar with a theoretical model. Journal of the Atmospheric Sciences, 56, 3485–3494.  https://doi.org/10.1175/1520-0469(1999)056<3485:acosvo>2.0.co;2.CrossRefGoogle Scholar
  20. Gavrilov, N. M., & Kshevetskii, S. P. (2013). Numerical modeling of propagation of breaking nonlinear acoustic-gravity waves from the lower to the upper atmosphere. Advances in Space Research, 51, 1168–1174.  https://doi.org/10.1016/j.asr.2012.10.023.CrossRefGoogle Scholar
  21. Gavrilov, N. M., & Kshevetskii, S. P. (2014a). Numerical modeling of the propagation of nonlinear acoustic-gravity waves in the middle and upper atmosphere. Izvestiya, Atmospheric and Oceanic Physics, 50, 66–72.  https://doi.org/10.1134/S0001433813050046.CrossRefGoogle Scholar
  22. Gavrilov, N. M., & Kshevetskii, S. P. (2014b). Three-dimensional numerical simulation of nonlinear acoustic-gravity wave propagation from the troposphere to the thermosphere. Earth Planets Space, 66, 88.  https://doi.org/10.1186/1880-5981-66-88.CrossRefGoogle Scholar
  23. Gavrilov, N. M., & Kshevetskii, S. P. (2015). Dynamical and thermal effects of nonsteady nonlinear acoustic-gravity waves propagating from tropospheric sources to the upper atmosphere. Advances in Space Research.  https://doi.org/10.1016/j.asr.2015.01.033.CrossRefGoogle Scholar
  24. Gavrilov, N. M., & Yudin, V. A. (1992). Model for coefficients of turbulence and effective Prandtl number produced by breaking gravity waves in the upper atmosphere. Journal of Geophysical Research, 97, 7619–7624.  https://doi.org/10.1029/92jd00185.CrossRefGoogle Scholar
  25. Gossard, E. E., & Hooke, W. H. (1975). Waves in the atmosphere. Amsterdam: Elsevier.Google Scholar
  26. Janjic, Z. I. (2002). A nonhydrostatic model based on new approach. Meteorology and Atmospheric Physics, 82(1), 271–285.Google Scholar
  27. Janjic, Z. I. (2006). The WRF NMM core. Overview of basic principles (presented by T. Black). NCEP. http://www.dtcenter.org/wrf-nmm/users/docs. Accessed 10 Jun 2017.
  28. Jonson, R. H., & Young, G. S. (1983). Heat and moisture budgets of tropical mesoscale anvil clouds. Journal of the Atmospheric Sciences, 80, 2138–2147.CrossRefGoogle Scholar
  29. Karpov, I. V., & Kshevetskii, S. P. (2014). Formation of large-scale disturbances in the upper atmosphere caused by acoustic-gravity wave sources on the Earth’s surface. Geomagnetism and Aeronomy, 54(4), 553–562.  https://doi.org/10.1134/S0016793214040173.CrossRefGoogle Scholar
  30. Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz, P. A., & Randall, D. A. (2009). Large-eddy simulation of maritime deep tropical convection. Journal of Advances in Modeling Earth Systems, 1(15), 13.Google Scholar
  31. Kherani, E. A., Lognonne, P., Hebert, H., Rolland, L., Astafyeva, E., Occhipinti, G., et al. (2012). Modelling of the total electronic content and magnetic field anomalies generated by the 2011 Tohoku-Oki tsunami and associated acoustic-gravity waves. Geophysical Journal International, 191, 1049–1066.  https://doi.org/10.1111/j.1365-246X.2012.05617.x.CrossRefGoogle Scholar
  32. Kshevetskii, S. P. (2001). Modelling of propagation of internal gravity waves in gases. Computational Mathematics and Mathematical Physics, 41, 295–310.Google Scholar
  33. Kshevetskii, S. P. (2002). Internal gravity waves in non-exponentially density-stratified fluids. Computational Mathematics and Mathematical Physics, 42(10), 1510–1521.Google Scholar
  34. Kshevetskii, S. P., & Kulichkov, S. N. (2015). Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature-disturbance distribution. Atmospheric and Oceanic Physics, 51(1), 42–48.  https://doi.org/10.1134/S0001433815010065.CrossRefGoogle Scholar
  35. Lax, P. D. (1957). Hyperbolic systems of conservation laws. Communications on Pure and Applied Mathematics, 10, 537–566.CrossRefGoogle Scholar
  36. Lax, P. D., & Wendroff, B. (1960). Hyperbolic systems of conservation laws. Communications on Pure and Applied Mathematics, 13, 217–237.CrossRefGoogle Scholar
  37. Leble, S., & Perelomova, A. (2013). Problem of proper decomposition and initialization of acoustic and entropy modes in a gas affected by the mass force. Applied Mathematical Modelling, 37, 629–635.CrossRefGoogle Scholar
  38. Liu, H.-L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A., Qian, L., et al. (2010). Thermosphere extension of the whole atmosphere community climate model. Journal of Geophysical Research, 115, A12302.  https://doi.org/10.1029/2010JA015586.CrossRefGoogle Scholar
  39. Liu, X., Xu, J., Liu, H.-L., & Ma, R. (2008). Nonlinear interactions between gravity waves with different wavelengths and diurnal tide. Journal of Geophysical Research, 113, D08112.  https://doi.org/10.1029/2007JD009136.CrossRefGoogle Scholar
  40. Matsumura, M., Saito, A., Iyemori, T., Shinagawa, H., Tsugawa, T., Otsuka, Y., Nishioka, M., & Chen, C. H. (2011). Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space 63(7), 885–889.CrossRefGoogle Scholar
  41. Medvedev, A. S., & Gavrilov, N. M. (1995). The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere. Journal of Atmospheric and Terrestrial Physics, 57, 1221–1231.CrossRefGoogle Scholar
  42. Miller, D. V. (1999). Thunderstorm induced gravity waves as a potential hazard to commercial aircraft. American Meteorological Society 79th Annual conference, Windham Anatole Hotel, Dallas, TX, January 10–15. Dallas: American Meteorological Society.Google Scholar
  43. Pedloski, J. (2006). Geophysical fluid dynamics. Berlin: Springer.Google Scholar
  44. Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRL-MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. Journal of Geophysical Research.  https://doi.org/10.1029/2002JA009430.CrossRefGoogle Scholar
  45. Pielke, R. A., Cotton, W. R., Walko, L. R., Tremback, C. J., Lyons, W. A., Grasso, L. D., et al. (1992). A comprehensive meteorological modeling system—RAMS. Meteorology and Atmospheric Physics, 49(1–4), 69–91.CrossRefGoogle Scholar
  46. Pierce, A. D., & Coroniti, S. C. (1966). A mechanism for the generation of acoustic-gravity waves during thunder-storm formation. Nature, 210, 1209–1210.  https://doi.org/10.1038/2101209a0.CrossRefGoogle Scholar
  47. Plougonven, R., & Snyder, Ch. (2007). Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. Journal of the Atmospheric Sciences, 64, 2502–2520.CrossRefGoogle Scholar
  48. Plougonven, R., & Zhang, F. (2014). Internal gravity waves from atmospheric jets and fronts. Reviews of Geophysics.  https://doi.org/10.1002/2012RG000419.CrossRefGoogle Scholar
  49. Sao Sabbas, F. T., Rampinelli, V. T., & Santiago, J. (2009). Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil. Annales Geophysics, 27, 1279–1293.CrossRefGoogle Scholar
  50. Shinagawa, H., Iyemori, T., Saito, S., & Maruyama, T. (2007). A numerical simulation of ionospheric and atmospheric variations associated with the Sumatra earthquake on December 26, 2004. Earth Planets Space, 59, 1015–1026.CrossRefGoogle Scholar
  51. Snively, J. B., & Pasko, V. B. (2003). Breaking of thunderstorm generated gravity waves as a source of short period ducted waves at mesopause altitudes. Geophysical Research Letters, 30(24), 2254.  https://doi.org/10.1029/2003GL018436.CrossRefGoogle Scholar
  52. Yu, Y., Hickey, M. P., & Liu, Y. (2009). A numerical model characterizing internal gravity wave propagation into the upper atmosphere. Advances in Space Research, 44, 836–846.  https://doi.org/10.1016/j.asr.2009.05.014.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physical-Mathematical Sciences and Information TechnologiesBaltic Federal UniversityKaliningradRussia
  2. 2.Atmospheric Physics DepartmentSaint Petersburg State UniversitySt. PetersburgRussia
  3. 3.Obukhov Institute of Atmospheric PhysicsRussian Academy of ScienceMoscowRussia

Personalised recommendations