Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 10, pp 3395–3401 | Cite as

The Cross-Correlation and Reshuffling Tests in Discerning Induced Seismicity

  • Ryan Schultz
  • Luciano Telesca
Article
  • 153 Downloads

Abstract

In recent years, cases of newly emergent induced clusters have increased seismic hazard and risk in locations with social, environmental, and economic consequence. Thus, the need for a quantitative and robust means to discern induced seismicity has become a critical concern. This paper reviews a Matlab-based algorithm designed to quantify the statistical confidence between two time-series datasets. Similar to prior approaches, our method utilizes the cross-correlation to delineate the strength and lag of correlated signals. In addition, use of surrogate reshuffling tests allows for the dynamic testing against statistical confidence intervals of anticipated spurious correlations. We demonstrate the robust nature of our algorithm in a suite of synthetic tests to determine the limits of accurate signal detection in the presence of noise and sub-sampling. Overall, this routine has considerable merit in terms of delineating the strength of correlated signals, one of which includes the discernment of induced seismicity from natural.

Keywords

Cross-correlation reshuffling tests induced seismicity statistical confidence 

References

  1. Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., et al. (2016). Hydraulic fracturing and seismicity in the western Canada sedimentary basin. Seismological Research Letters, 87(3), 631–647.  https://doi.org/10.1785/0220150263.CrossRefGoogle Scholar
  2. Buck, John R., Daniel, Michael M., & Singer, Andrew C. (2002). Computer explorations in signals and systems using MATLAB (2nd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  3. Davis, S. D., & Frohlich, C. (1993). Did (or will) fluid injection cause earthquakes?-criteria for a rational assessment. Seismological Research Letters, 64(3–4), 207–224.  https://doi.org/10.1785/gssrl.64.3-4.207.CrossRefGoogle Scholar
  4. Goebel, T. H. W., Hauksson, E., Aminzadeh, F., & Ampuero, J. P. (2015). An objective method for the assessment of fluid injection-induced seismicity and application to tectonically active regions in central California. Journal of Geophysical Research: Solid Earth, 120(10), 7013–7032.  https://doi.org/10.1002/2015JB011895.CrossRefGoogle Scholar
  5. Healy, J. H., Rubey, W. W., Griggs, D. T., & Raleigh, C. B. (1968). The Denver earthquakes. Science, 161(3848), 1301–1310.CrossRefGoogle Scholar
  6. Heinicke, J., Martinelli, G., & Telesca, L. (2012). Geodynamically induced variations in the emission of CO2 gas at San Faustino (Central Apennines, Italy). Geofluids, 12(2), 123–132.  https://doi.org/10.1111/j.1468-8123.2011.00345.x.CrossRefGoogle Scholar
  7. Hua, W., Fu, H., Chen, Z., Zheng, S., & Yan, C. (2015). Reservoir-induced seismicity in high seismicity region—a case study of the Xiaowan reservoir in Yunnan province, China. Journal of Seismology, 19(2), 567–584.  https://doi.org/10.1007/s10950-015-9482-3.CrossRefGoogle Scholar
  8. Huang, Y., & Beroza, G. C. (2015). Temporal variation in the magnitude-frequency distribution during the Guy-Greenbrier earthquake sequence. Geophysical Research Letters, 42(16), 6639–6646.  https://doi.org/10.1002/2015GL065170.CrossRefGoogle Scholar
  9. Little, M. A., McSharry, P. E., Moroz, I. M., & Roberts, S. J. (2006). Testing the assumptions of linear prediction analysis in normal vowels. The Journal of the Acoustical Society of America, 119(1), 549–558.  https://doi.org/10.1121/1.2141266.CrossRefGoogle Scholar
  10. Mahani, A. B., Schultz, R., Kao, H., Walker, D., Johnson, J., & Salas, C. (2017). Fluid injection and seismic activity in the Northern Montney Play, British Columbia, Canada, with special reference to the 17 August 2015 Mw 4.6 induced earthquake. Bulletin of the Seismological Society of America.  https://doi.org/10.1785/0120160175.CrossRefGoogle Scholar
  11. Niven, E. B., & Deutsch, C. V. (2012). Calculating a robust correlation coefficient and quantifying its uncertainty. Computers and Geosciences, 40, 1–9.  https://doi.org/10.1016/j.cageo.2011.06.021.CrossRefGoogle Scholar
  12. Oprsal, I., & Eisner, L. (2014). Cross-correlation—An objective tool to indicate induced seismicity. Geophysical Journal International, 196(3), 1536–1543.  https://doi.org/10.1093/gji/ggt50.CrossRefGoogle Scholar
  13. Schultz, R., Mei, S., Pană, D., Stern, V., Gu, Y. J., Kim, A., et al. (2015a). The Cardston earthquake swarm and hydraulic fracturing of the Exshaw formation (Alberta Bakken Play). Bulletin of the Seismological Society of America, 105(6), 2871–2884.  https://doi.org/10.1785/0120150131.CrossRefGoogle Scholar
  14. Schultz, R., Stern, V., & Gu, Y. J. (2014). An investigation of seismicity clustered near the Cordel Field, west central Alberta, and its relation to a nearby disposal well. Journal of Geophysical Research: Solid Earth, 119(4), 3410–3423.  https://doi.org/10.1002/2013JB010836.CrossRefGoogle Scholar
  15. Schultz, R., Stern, V., Novakovic, M., Atkinson, G., & Gu, Y. J. (2015b). Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks. Geophysical Research Letters, 42, 2.  https://doi.org/10.1002/2015GL063455.CrossRefGoogle Scholar
  16. Schultz, R., Wang, R., Gu, Y. J., Haug, K., & Atkinson, G. (2017). A Seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1002/2016jb013570.CrossRefGoogle Scholar
  17. Shapiro, S. A., Huenges, E., & Borm, G. (1997). Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International.  https://doi.org/10.1111/j.1365-246X.1997.tb01215.x.CrossRefGoogle Scholar
  18. Telesca, L. (2010). Analysis of the cross-correlation between seismicity and water level in the Koyna Area of India. Bulletin of the Seismological Society of America, 100, 2317–2321.  https://doi.org/10.1785/0120090392.CrossRefGoogle Scholar
  19. Telesca, L., ElShafey Fat ElBary, R., El-Ela Amin Mohamed, A., & ElGabry, M. (2012). Analysis of the cross-correlation between seismicity and water level in the Aswan area (Egypt) from 1982 to 2010. Natural Hazards and Earth System Sciences, 12(7), 2203–2207.  https://doi.org/10.5194/nhess-12-2203-2012.CrossRefGoogle Scholar
  20. Telesca, L., Giocoli, A., Lapenna, V., & Stabile, T. A. (2015). Robust identification of periodic behavior in the time dynamics of short seismic series: the case of seismicity induced by Pertusillo Lake, southern Italy. Stochastic Environmental Research and Risk Assessment, 29(5), 1437–1446.  https://doi.org/10.1007/s00477-014-0980-6.CrossRefGoogle Scholar
  21. Vlček, J., Eisner, L., Stabile, T. A., & Telesca, L. (2017). Temporal relationship between injection rates and induced seismicity. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1622-y.CrossRefGoogle Scholar
  22. Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A., & Rubinstein, J. L. (2015). High-rate injection is associated with the increase in US mid-continent seismicity. Science, 348(6241), 1336–1340.  https://doi.org/10.1126/science.aab1345.CrossRefGoogle Scholar
  23. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869.  https://doi.org/10.1785/0119990114.CrossRefGoogle Scholar
  24. Yadav, A., Bansal, B. K., & Pandey, A. P. (2016). Five decades of triggered earthquakes in Koyna–Warna Region, western India–A review. Earth-Science Reviews, 162, 433–450.  https://doi.org/10.1016/j.earscirev.2016.09.013.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Alberta Geological SurveyEdmontonCanada
  2. 2.Istituto di Metodologie per l’Analisi AmbientaleBasilicataItaly

Personalised recommendations