Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 10, pp 3403–3418 | Cite as

3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise

  • Jun Xie
  • Risheng Chu
  • Yingjie Yang
Article
  • 147 Downloads

Abstract

Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (< 50 s) surface wave from ambient noise, while studies using long period surface wave from ambient noise are limited. In this paper, we demonstrate the feasibility of using long-period surface wave from ambient noise to study the lithospheric structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D VS structures beneath the contiguous United States at period band of 10–150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.

Notes

Acknowledgements

We thank the editor and anonymous reviewers for their constructive suggestions. All seismic data are obtained from the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC) at http://www.iris.edu/dms/dmc/. This work was financially supported by the Major Program of the National Natural Science Foundation of China (NSFC) under grant 41590854, the Strategic Priority Research Program (B) of Chinese Academy of Sciences through grant XDB18000000, and NSFC through grant 41704065.

Supplementary material

24_2018_1881_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2344 kb)

References

  1. Abt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H., & Romanowicz, B. (2010). North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research: Solid Earth, 115(B9).  https://doi.org/10.1029/2009JB006914.
  2. Afonso, J. C., Fullea, J., Griffin, W. L., Yang, Y., Jones, A. G., Connolly, J. A. D., et al. (2013a). 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: A priori petrological information and geophysical observables. Journal of Geophysical Research Solid Earth, 118(5), 2586–2617.  https://doi.org/10.1002/jgrb.50124.CrossRefGoogle Scholar
  3. Afonso, J. C., Fullea, J., Yang, Y., Connolly, J. A. D., & Jones, A. G. (2013b). 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis. Journal of Geophysical Research Solid Earth, 118(4), 1650–1676.CrossRefGoogle Scholar
  4. Barmin, M. P., Levshin, A. L., Yang, Y., & Ritzwoller, M. H. (2011). Epicentral location based on rayleigh wave empirical green’s functions from ambient seismic noise. Geophysical Journal International, 184(2), 869–884.  https://doi.org/10.1111/j.1365-246X.2010.04879.x.CrossRefGoogle Scholar
  5. Bartzsch, S., Lebedev, S., & Meier, T. (2011). Resolving the lithosphere–asthenosphere boundary with seismic Rayleigh waves. Geophysical Journal International, 186(3), 1152–1164.CrossRefGoogle Scholar
  6. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., et al. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260.  https://doi.org/10.1111/j.1365-246X.2007.03374.x.CrossRefGoogle Scholar
  7. Bensen, G. D., Ritzwoller, M. H., & Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research, 113(B5), B05306.CrossRefGoogle Scholar
  8. Bodin, T., Sambridge, M., Tkalčić, H., Arroucau, P., Gallagher, K., & Rawlinson, N. (2012). Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research Solid Earth, 117(B2), B02301.  https://doi.org/10.1029/2011JB008560.CrossRefGoogle Scholar
  9. Chu, R., & Helmberger, D. V. (2014). Lithospheric waveguide beneath the Midwestern United States; massive low-velocity zone in the lower crust. Geochemistry, Geophysics, Geosystems, 15(4), 1348–1362.CrossRefGoogle Scholar
  10. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.  https://doi.org/10.1016/0031-9201(81)90046-7.CrossRefGoogle Scholar
  11. Ekström, G. (2011). A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25-250 s. Geophysical Journal International, 187(3), 1668–1686.  https://doi.org/10.1111/j.1365-246X.2011.05225.x.CrossRefGoogle Scholar
  12. Ekström, G. (2014). Love and Rayleigh phase-velocity maps, 5–40 s, of the western and central USA from USArray data. Earth Planet Science Letter, 402, 42–49.  https://doi.org/10.1016/j.epsl.2013.11.022.CrossRefGoogle Scholar
  13. Ekström, G. (2017). Short-period surface-wave phase velocities across the conterminous United States. Physics Earth Planetary Interiors, 270, 168–175.  https://doi.org/10.1016/j.pepi.2017.07.010.CrossRefGoogle Scholar
  14. Fenneman, N. M. (1917). Physiographic divisions of the United States. Proceedings of the National academy of Sciences of the United States of America, 1(3), 17–22.CrossRefGoogle Scholar
  15. Foster, A., Ekström, G., & Nettles, M. (2014). Surface wave phase velocities of the Western United States from a two-station method. Geophysical Journal International, 196(2), 1189–1206.CrossRefGoogle Scholar
  16. Godey, S., Snieder, R., Villaseñor, A., & Benz, H. M. (2003a). Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory. Geophysical Journal International, 152(3), 620–632.  https://doi.org/10.1046/j.1365-246X.2003.01866.x.CrossRefGoogle Scholar
  17. Godey, S., Snieder, R., Villaseñor, A., & Benz, H. M. (2003b). Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory. Geophysical Journal International, 152(3), 620–632.  https://doi.org/10.1046/j.1365-246X.2003.01866.x.CrossRefGoogle Scholar
  18. Grand, S. P., & Helmberger, D. V. (1984). Upper mantle shear structure of North America. Geophysical Journal International, 76(2), 399–438.CrossRefGoogle Scholar
  19. Guo, Z., Chen, Y. J., Ning, J., Yang, Y., Afonso, J. C., & Tang, Y. (2016). Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China. Earth Planet Science Letter, 433, 31–43.  https://doi.org/10.1016/j.epsl.2015.09.035.CrossRefGoogle Scholar
  20. Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). DRAM: Efficient adaptive MCMC. Statistics and Computing, 16(4), 339–354.  https://doi.org/10.1007/s11222-006-9438-0.CrossRefGoogle Scholar
  21. Haned, A., Stutzmann, E., Schimmel, M., Kiselev, S., Davaille, A., & Yelles-Chaouche, A. (2015). Global tomography using seismic hum. Geophysical Journal International, 204(2), 1222–1236.CrossRefGoogle Scholar
  22. Hawley, W. B., Allen, R. M., & Richards, M. A. (2016). Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate. Science, 353(6306), 1406–1408.CrossRefGoogle Scholar
  23. Hoffman, P. F. (1988). United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 16(1), 543–603.CrossRefGoogle Scholar
  24. Hoffman, P. F. (1989). Precambrian geology and tectonic history of North America. In A. W. Bally & A. R. Palmer (Eds.), The geology of North America—An overview (pp. 447–512). Boulder, CO: Geology Society of America.CrossRefGoogle Scholar
  25. Humphreys, E. D., Schmandt, B., Bezada, M. J., & Perry-Houts, J. (2015). Recent craton growth by slab stacking beneath Wyoming. Earth Planet Science Letter, 429, 170–180.CrossRefGoogle Scholar
  26. Jia, Z., Ni, S., Chu, R., & Zhan, Z. (2017). Joint inversion for earthquake depths using local waveforms and amplitude spectra of Rayleigh waves. Pure and Applied Geophysics, 174(1), 261–277.CrossRefGoogle Scholar
  27. Kaban, M. K., Mooney, W. D., & Petrunin, A. G. (2015). Cratonic root beneath North America shifted by basal drag from the convecting mantle. Nature Geoscience, 8(10), 797.CrossRefGoogle Scholar
  28. Lebedev, S., Adam, J. M.-C., & Meier, T. (2013). Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies. Tectonophysics, 609, 377–394.  https://doi.org/10.1016/j.tecto.2012.12.030.CrossRefGoogle Scholar
  29. Lebedev, S., & Van Der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophysical Journal International, 173(2), 505–518.CrossRefGoogle Scholar
  30. Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1), 281–298.  https://doi.org/10.1111/j.1365-.CrossRefGoogle Scholar
  31. Lin, F.-C., Ritzwoller, M. H., Yang, Y., Moschetti, M. P., & Fouch, M. J. (2011). Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geoscience, 4(1), 55.CrossRefGoogle Scholar
  32. Luo, Y., Yang, Y., Xu, Y., Xu, H., Zhao, K., & Wang, K. (2015). On the limitations of interstation distances in ambient noise tomography. Geophysical Journal International, 201(2), 652–661.  https://doi.org/10.1093/gji/ggv043.CrossRefGoogle Scholar
  33. Ma, S., Prieto, G. A., & Beroza, G. C. (2008). Testing community velocity models for Southern California using the ambient seismic field. Bulletin of the Seismological Society of America, 98(6), 2694–2714.  https://doi.org/10.1785/0120080947.CrossRefGoogle Scholar
  34. Marone, F., Gung, Y., & Romanowicz, B. (2007). Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data. Geophysical Journal International, 171(1), 206–222.CrossRefGoogle Scholar
  35. Masters, G., Barmine, M. P., & Kientz, S. (2007). Mineos user’s manual. Geodyn: Computational Infrastructure.Google Scholar
  36. Mégnin, C., & Romanowicz, B. (2000). The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. Geophysical Journal International, 143(3), 709–728.CrossRefGoogle Scholar
  37. Menke, W., Skryzalin, P., Levin, V., Harper, T., Darbyshire, F., & Dong, T. (2016). The Northern Appalachian Anomaly: A modern asthenospheric upwelling. Geophysical Research Letters.  https://doi.org/10.1002/2016GL070918.CrossRefGoogle Scholar
  38. Moschetti, M. P., Ritzwoller, M. H., Lin, F.-C., & Yang, Y. (2010). Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data. Journal of Geophysical Research Solid Earth, 115(B10), B10306.  https://doi.org/10.1029/2010JB007448.CrossRefGoogle Scholar
  39. Moschetti, M., Ritzwoller, M. H., & Shapiro, N. M. (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(Q08010), 2007.  https://doi.org/10.1029/2007GC001655.CrossRefGoogle Scholar
  40. Nishida, K., Montagner, J.-P., & Kawakatsu, H. (2009). Global surface wave tomography using seismic hum. Science, 326(5949), 112.  https://doi.org/10.1126/science.1176389.CrossRefGoogle Scholar
  41. Özalaybey, S., Savage, M. K., Sheehan, A. F., Louie, J. N., & Brune, J. N. (1997). Shear-wave velocity structure in the northern Basin and Range province from the combined analysis of receiver functions and surface waves. Bulletin of the Seismological Society of America, 87(1), 183–199.Google Scholar
  42. Pollitz, F. F., & Mooney, W. D. (2016). Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging. Geophysical Research Letters, 43(1), 118–126.CrossRefGoogle Scholar
  43. Porter, R., Liu, Y., & Holt, W. E. (2016). Lithospheric records of orogeny within the continental U.S. Geophysics Research Letter, 43(1), 50.  https://doi.org/10.1002/2015gl066950.CrossRefGoogle Scholar
  44. Ritzwoller, M. H., Shapiro, N. M., Barmin, M. P., & Levshin, A. L. (2002). Global surface wave diffraction tomography. Journal of Geophysical Research: Solid Earth, 107(B12), 2335.  https://doi.org/10.1029/2002JB001777.CrossRefGoogle Scholar
  45. Savage, B., Covellone, B. M., & Shen, Y. (2017). Wave speed structure of the eastern North American margin. Earth Planet Science Letter, 459, 394–405.CrossRefGoogle Scholar
  46. Saygin, E., & Kennett, B. L. N. (2012). Crustal structure of Australia from ambient seismic noise tomography. Journal of Geophysical Research: Solid Earth, 117(B1), B01304.  https://doi.org/10.1029/2011JB008403.CrossRefGoogle Scholar
  47. Schaeffer, A. J., & Lebedev, S. (2014). Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet Science Letter, 402, 26–41.  https://doi.org/10.1016/j.epsl.2014.05.014.CrossRefGoogle Scholar
  48. Schmandt, B., & Lin, F.-C. (2014). P and S wave tomography of the mantle beneath the United States. Geophysical Research Letters, 41(18), 6342–6349.CrossRefGoogle Scholar
  49. Shapiro, N. M., & Ritzwoller, M. H. (2002). Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151(1), 88–105.CrossRefGoogle Scholar
  50. Shen, Y., Ren, Y., Gao, H., & Savage, B. (2012). An improved method to extract very-broadband empirical Green’s functions from ambient seismic noise. Bulletin of the Seismological Society of America, 102(4), 1872–1877.  https://doi.org/10.1785/0120120023.CrossRefGoogle Scholar
  51. Shen, W., & Ritzwoller, M. H. (2016). Crustal and uppermost mantle structure beneath the United States. Journal of Geophysical Research Solid Earth, 121(6), 2016JB012887.  https://doi.org/10.1002/2016jb012887.CrossRefGoogle Scholar
  52. Shen, W., Ritzwoller, M. H., & Schulte-Pelkum, V. (2013a). A 3-D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research Solid Earth, 118(1), 262–276.  https://doi.org/10.1029/2012JB009602.CrossRefGoogle Scholar
  53. Shen, W., Ritzwoller, M. H., Schulte-Pelkum, V., & Lin, F.-C. (2013b). Joint inversion of surface wave dispersion and receiver functions: A Bayesian Monte-Carlo approach. Geophysical Journal International, 192(2), 807–836.CrossRefGoogle Scholar
  54. Thomas, W. A. (2006). Tectonic inheritance at a continental margin. GSA Today, 16(2), 4–11.CrossRefGoogle Scholar
  55. Tian, Y., & Zhao, D. (2012). P-wave tomography of the western United States: Insight into the Yellowstone hotspot and the Juan de Fuca slab. Physics of the Earth and Planetary Interiors, 200, 72–84.CrossRefGoogle Scholar
  56. Trampert, J., & Woodhouse, J. H. (2003). Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 S. Geophysical Journal International, 154(1), 154–165.  https://doi.org/10.1046/j.1365-246X.2003.01952.x.CrossRefGoogle Scholar
  57. Whitmeyer, S. J., & Karlstrom, K. E. (2007). Tectonic model for the proterozoic growth of North America. Geosphere, 3(4), 220–259.CrossRefGoogle Scholar
  58. Xia, Y., Ni, S., & Zeng, X. (2013). Twin enigmatic microseismic sources in the Gulf of Guinea observed on intercontinental seismic stations. Geophysical Journal International.  https://doi.org/10.1093/gji/ggt076.CrossRefGoogle Scholar
  59. Xie, J., Yang, Y., & Ni, S. (2016). On the accuracy of long-period Rayleigh waves extracted from ambient noise. Geophysical Journal International, 206(1), 48–55.CrossRefGoogle Scholar
  60. Xing, G., Niu, F., Chen, M., & Yang, Y. (2016). Effects of shallow density structure on the inversion for crustal shear wave speeds in surface wave tomography. Geophysical Journal International, 205(2), 1144–1152.CrossRefGoogle Scholar
  61. Yang, Y. (2014). Application of teleseismic long-period surface waves from ambient noise in regional surface wave tomography: A case study in western USA. Geophysical Journal International, 198(3), 1644–1652.  https://doi.org/10.1093/gji/ggu234.CrossRefGoogle Scholar
  62. Yang, Y., Ritzwoller, M. H., Lin, F.-C., Moschetti, M. P., & Shapiro, N. M. (2008). Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. Journal of Geophysical Research Solid Earth, 113(B12), B12310.  https://doi.org/10.1029/2008JB005833.CrossRefGoogle Scholar
  63. Yuan, H., & Romanowicz, B. (2010). Lithospheric layering in the North American craton. Nature, 466(7310), 1063–1068.  https://doi.org/10.1038/nature09332.CrossRefGoogle Scholar
  64. Zeng, X., & Ni, S. (2010). A persistent localized microseismic source near the Kyushu Island, Japan. Geophysical Research Letters, 37(24), L24307.  https://doi.org/10.1029/2010GL045774.CrossRefGoogle Scholar
  65. Zeng, X., Xie, J., & Ni, S. (2015). Ground truth location of earthquakes by use of ambient seismic noise from a sparse seismic network: A case study in Western Australia. Pure and Applied Geophysics, 172(6), 1397–1407.CrossRefGoogle Scholar
  66. Zhao, K., Luo, Y., & Xie, J. (2017). Broad-band Rayleigh wave phase velocity maps (10–150 s) across the United States from ambient noise data. Geophysical Journal International, 208(2), 1265–1275.  https://doi.org/10.1093/gji/ggw460.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and GeophysicsChinese Academy of SciencesWuhanChina
  2. 2.Department of Earth and Planetary Sciences, ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOCMacquarie UniversityNorth RydeAustralia

Personalised recommendations