Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 10, pp 3419–3439 | Cite as

Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

  • Xiaobo Liu
  • Jingyi Chen
  • Zhencong Zhao
  • Haiqiang Lan
  • Fuping Liu
Article
  • 166 Downloads

Abstract

In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth’s properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

Keywords

Irregular free surface viscoelastic wavefield simulation convolutional perfectly matched layer 

Notes

Acknowledgements

The authors acknowledge the Faculty Internationalization Grant at The University of Tulsa. The author, Dr. Fuping Liu, also thanks the support for this study from The Beijing City Board of Education Science and Technology Key Project (KZ201510015015), PXM2016_014223_000025, Beijing City Board of Education Science and Technology Project (KM201510015009), and Natural Science Foundation of Beijing (4142016). We appreciate William Sanger (Schlumberger) for English-polishing. Finally, thanks to two anonymous reviewers and to our editor Andrew Gorman for the valuable suggestions and comments.

References

  1. Aki, K., & Richards, P. G. (2002). Quantitative seismology. Mill Valley: University Science Books.Google Scholar
  2. Alterman, Z., & Karal, F. C, Jr. (1968). Propagation of elastic waves in layered media by finite difference methods. Bulletin of the Seismological Society of America, 58, 367–398.Google Scholar
  3. Appelö, D., & Peterson, N. A. (2009). A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Communications in Computational Physics, 5, 84–107.Google Scholar
  4. Carcione, J. M. (1993). Seismic modeling in viscoelastic media. Geophysics, 58, 110–120.CrossRefGoogle Scholar
  5. Carcione, J. M. (2007). Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media (Vol. 38). Oxford: Elsevier.Google Scholar
  6. Carcione, J. M., Kosloff, D., & Kosloff, R. (1988a). Wave propagation simulation in a linear viscoacoustic medium. Geophysical Journal International, 93, 393–401.CrossRefGoogle Scholar
  7. Carcione, J. M., Kosloff, R., & Kosloff, D. (1988b). Viscoacoustic wave propagation simulation in the earth. Geophysics, 53, 769–777.CrossRefGoogle Scholar
  8. Carcione, J. M., Kosloff, D., & Kosloff, R. (1988c). Wave propagation simulation in a linear viscoelasric medium. Geophysics, 95, 597–611.Google Scholar
  9. Drossaert, F. H., & Giannopoulos, A. (2007). A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves. Geophysics, 72(2), T9–T17.CrossRefGoogle Scholar
  10. Emmerich, H., & Korn, M. (1987). Incorporation of attenuation into time domain computations of seismic wave fields. Geophysics, 52, 1252–1264.CrossRefGoogle Scholar
  11. Fan, N., Zhao, L., Xie, X., Ge, Z., & Yao, Z. (2016). Two-dimensional time-domain finite-different modeling for viscoelastic seismic wave propagation. Geophysical Journal International, 206, 1539–1551.CrossRefGoogle Scholar
  12. Hvid, S. L., 1994. Three dimensional algebraic grid generation. PhD Thesis, Technical University of Denmark.Google Scholar
  13. Ilan, A. (1978). Stability of finite difference schemes for the problem of elastic wave propagation in a quarter plane. Journal of Computational Physics, 29, 389–403.CrossRefGoogle Scholar
  14. Ilan, A., & Loewenthal, D. (1976). Instability of finite difference schemes due to boundary conditions in elastic media. Geophysical Prospecting.  https://doi.org/10.1111/j.1365-2478.CrossRefGoogle Scholar
  15. Kimentos, T. (1995). Attenuation of P and S-waves as a method of distinguishing gas and condensate from oil and water. Geophysics, 60, 447–458.CrossRefGoogle Scholar
  16. Komatitsch, D., & Tromp, J. (1999). Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139, 806–822.CrossRefGoogle Scholar
  17. Kosloff, D., & Carcione, J. M. (2010). Two-dimensional simulation of Rayleigh waves with staggered sine/cosine transforms and variable grid spacing. Geophysics, 75, T133–T140.CrossRefGoogle Scholar
  18. Kristek, J., & Moczo, P. (2003). Seismic-wave propagation in viscoelastic media with material discontinuities: A 3D fourth-order staggered-grid finite-difference modeling. Bulletin of the Seismological Society of America, 93, 2273–2280.CrossRefGoogle Scholar
  19. Kuzuoglu, M., & Mittra, R. (1996). Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE, 6, 447–449.Google Scholar
  20. Lan, H., Chen, J., Zhang, Z., Liu, Y., Zhao, J., & Shi, R. (2016). Application of the perfectly matched layer in seismic wavefield simulation with an irregular free surface. Geophysical Prospecting, 64, 112–128.CrossRefGoogle Scholar
  21. Lan, H., & Zhang, Z. (2011). Three-dimensional wave-field simulation in Heterogeneous transversely isotropic media with irregular free surface. Bulletin of the Seismological Society of America, 101, 1354–1370.CrossRefGoogle Scholar
  22. Li, Y., & Matar, O. B. (2010). Convolutional perfectly matched layer for elastic second-order wave equation. The Journal of the Acoustical Society of America, 127, 1318–1327.CrossRefGoogle Scholar
  23. Liu, Y., & Sen, K. M. (2009). Advanced finite-difference methods for seismic modeling. Geohorizons, 14, 5–16.Google Scholar
  24. Martin, R., Komatischa, D., & Ezziani, A. (2008). An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation in poroelastic media. Geophysics, 73, 51–61.CrossRefGoogle Scholar
  25. Matar, O. B., Preobrazhensky, V., & Pernod, P. (2005). Two-dimensional axi-symmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media. Journal Acoustic society of America, 118, 2880–2890.CrossRefGoogle Scholar
  26. Mavko, G., Dvorkin, J., & Walls, J. (2005). A rock physics and attenuation analysis of a well from the Gulf of Mexico. 75th Annual International Meeting, SEG, pp. 1585–1588.Google Scholar
  27. Nilsson, S., Petersson, N. A., Sjogreen, B., & Kreiss, H. O. (2007). Stable difference approximations for the elastic wave equation in second order formulation. SIAM Journal on Numerical Analysis, 45, 1902–1936.CrossRefGoogle Scholar
  28. Robertsson, J. O. (1996). A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics, 61, 1921–1934.CrossRefGoogle Scholar
  29. Robertsson, J. O., Blanch, J. O., & Symes, W. W. (1994). Viscoelastic finite difference modeling. Geophysics, 59, 1444–1456.CrossRefGoogle Scholar
  30. Roden, J. A., & Gedney, S. D. (2000). Convolutional PML(C-PML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave Optical Technology Letters, 27, 334–339.CrossRefGoogle Scholar
  31. Ruud, B., & Hestholm, S. (2001). 2D surface topography boundary conditions in seismic wave modelling. Geophysical Prospecting, 49, 445–460.CrossRefGoogle Scholar
  32. Saenger, E. H., & Bohlen, T. (2004). Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics, 69, 583–591.CrossRefGoogle Scholar
  33. Sun, Y., Zhang, W., & Chen, X. (2016). Seismic-wave modeling in the presence of surface topography in 2D general anisotropic media by a curvilinear grid finite-difference method. Bulletin of the Seismological Society of America, 106, 1036–1054.CrossRefGoogle Scholar
  34. Tal-Ezer, H., Carcione, J. M., & Kosloff, D. (1990). An accurate and efficient scheme for wave propagation in a linear viscoelastic medium. Geophysics, 55, 1366–1379.CrossRefGoogle Scholar
  35. Tessmer, E., & Kosloff, D. (1994). 3-D elastic modeling with surface topography by a Chebychev spectral method. Geophysics, 59, 464–473.CrossRefGoogle Scholar
  36. Thompson, J. F., Warsi, Z. U. A., & Mastin, C. W. (1985). Numercial grid generation foundations and applicatioins. New York: North Hollad Publishing Company.Google Scholar
  37. Trifunac, M. D. (1971). Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves. Bulletin of the Seismological Society of America, 61(6), 1755–1770.Google Scholar
  38. Vidale, J. F., & Clayton, R. W. (1986). A stable free-surface boundary condition for two-dimensional elastic finite-difference wave simulation. Geophysics, 51, 2247–2249.CrossRefGoogle Scholar
  39. Virieux, J. (1986). P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51, 889–901.CrossRefGoogle Scholar
  40. Xu, T., & McMechan, G. A. (1995). Composite memory variables for viscoelastic synthetic seismograms. Geophysical Journal International, 121, 634–639.CrossRefGoogle Scholar
  41. Yuan, S., Wang, S., Sun, W., Miao, L., & Li, Z. (2014). Perfectly matched layer on curvilinear grid for the second-order seismic acoustic wave equation. Exploration Geophysics, 45, 94–104.CrossRefGoogle Scholar
  42. Zeng, C., Xia, J., Miller, R. D., & Tsoflias, G. P. (2011). Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves. Geophysics, 76, T43–T52.CrossRefGoogle Scholar
  43. Zhu, T., & Sun, J. (2017). Viscoelastic reverse time migration with attenuation compensation. Geophysics, 83, S61–S73.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xiaobo Liu
    • 1
  • Jingyi Chen
    • 1
  • Zhencong Zhao
    • 1
  • Haiqiang Lan
    • 2
  • Fuping Liu
    • 3
  1. 1.Seismic Anisotropy Group, Department of GeosciencesThe University of TulsaTulsaUSA
  2. 2.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.Beijing Institute of Graphic CommunicationBeijingChina

Personalised recommendations