Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 10, pp 3671–3696 | Cite as

Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

  • Raju Attada
  • Prashant Kumar
  • Hari Prasad Dasari
Article

Abstract

Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in a regional model.

Keywords

Indian summer monsoon high-resolution model land surface models error analysis 

Notes

Acknowledgements

Authors are grateful for the contribution of the anonymous reviewers and Editor whose constructive comments and valuable suggestions have substantially improved this article. Authors are thankful to IMD, ECMWF, and TRMM for providing data sets used in this study. The second author is thankful to Space Applications Centre (SAC-ISRO) for logistic support. We also acknowledge Dr. Ravi Kumar Kunchala on the scientific discussions during the manuscript preparation.

References

  1. Anthes, R. A., Kuo, Y.-H., Hsie, E.-Y., Low-Nam, S., & Bettge, T. W. (1989). Estimation of skill and uncertainty in regional numerical models. Quarterly Journal Royal Meteorological Society, 115, 763–806.CrossRefGoogle Scholar
  2. Asharaf, S., Dobler, A., & Ahrens, B. (2012). Soil moisture–precipitation feedback processes in the Indian summer monsoon season. Journal of Hydrometeorology, 13, 1461–1474.  https://doi.org/10.1175/JHM-D-12-06.1.CrossRefGoogle Scholar
  3. Betts, A. K., Ball, J. H., Beljaars, A., Miller, M. J., & Viterbo, P. A. (1996). The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. Journal of Geophysical Research, 101(D3), 7209–7225.  https://doi.org/10.1029/95JD02135.CrossRefGoogle Scholar
  4. Boos, W. R., & Kuang, Z. M. (2013). Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Scientific Reports, 3, 1192.  https://doi.org/10.1038/srep01192.CrossRefGoogle Scholar
  5. Cai, X., Yang, Z. L., Xia, Y., Huang, M., Wei, H., Leung, L. R., et al. (2014). Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. Journal of Geophysical Research Atmospheres, 119, 13751–13770.  https://doi.org/10.1002/2014JD022113.CrossRefGoogle Scholar
  6. Chen, F., & Dudhia, J. (2001). Coupling an Advanced Land Surface-Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review, 129, 569–585.  https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.CrossRefGoogle Scholar
  7. Chen, S. H., & Sun, W. Y. (2002). A one dimensional time-dependent cloud model. Journal of the Meteorological Society of Japan, 80, 99–118.  https://doi.org/10.2151/jmsj.80.99.CrossRefGoogle Scholar
  8. Clapp, R. B., & Hornberger, G. M. (1978). Empirical equations for some soil hydraulic properties. Water Resources Research, 14(4), 601–604.  https://doi.org/10.1029/WR014i004p00601.CrossRefGoogle Scholar
  9. Dickinson, R. E., Shaikh, M., Bryant, R., & Graumlich, L. (1998). Interactive canopies for a climatemodel. Journal of Climate, 11(11), 2823–2836.  https://doi.org/10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2.CrossRefGoogle Scholar
  10. Dorman, J., & Sellers, P. (1989). A global climatology of albedo, roughness length, and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model SIB. Journal of Applied Meteorology, 28, 833–855.  https://doi.org/10.1175/1520-0450(1989)028<0833:AGCOAR>2.0.CO;2.CrossRefGoogle Scholar
  11. Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Science, 46, 3077–3107.  https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  12. Dudhia, J. (1996). A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, NCAR, pp. 49–50.Google Scholar
  13. Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., et al. (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research, 108, 8851.  https://doi.org/10.1029/2002JD003296.CrossRefGoogle Scholar
  14. Ferranti, L., Slingo, J. M., Palmer, T. N., & Hoskins, B. J. (1999). The effect of land-surface feedbacks on the monsoon circulation. Quarterly Journal Royal Meteorological Society, 125, 1527–1550.  https://doi.org/10.1002/qj.49712555704.CrossRefGoogle Scholar
  15. Giorgi, F. (2001). Regional climate information-evaluation and projections. Chapter 10 of: Climate change 2001: The scientific basis. In J. T. Houghton (Ed.), Contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change (pp. 583–638). Cambridge: Cambridge University Press.Google Scholar
  16. Hariprasad, D., Venkata Srinivas, C., Venkata Bhaskar Rao, D., & Anjaneyulu, Y. (2011). Simulation of Indian monsoon extreme rainfall events during the decadal period 2000–2009 using a high resolution mesoscale model. Advances in Geosciences, 6(A), 31–48.Google Scholar
  17. Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at Fine scales. Journal of Hydrometeorology, 8, 38–55.  https://doi.org/10.1175/JHM560.1.CrossRefGoogle Scholar
  18. Janjic, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Monthly Weather Review, 122, 927–945.  https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.CrossRefGoogle Scholar
  19. Jiang, X. Y., Niu, G. Y., & Yang, Z. L. (2009). Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. Journal of Geophysical Research, 114, D06109.  https://doi.org/10.1029/2008JD010756.CrossRefGoogle Scholar
  20. Kar, S. C., Mali, P., & Routray, A. (2014). Impact of land surface processes on the South Asian Monsoon simulations using WRF modeling system. Pure and Applied Geophysics, 171, 2461.  https://doi.org/10.1007/s00024-014-0834-7.CrossRefGoogle Scholar
  21. Koster (The GLACE Team), et al. (2004). Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140.  https://doi.org/10.1126/science.1100217.CrossRefGoogle Scholar
  22. Krishnan, R., Mujumdar, M., Vaidya, V., Ramesh, K. V., & Satyan, V. (2003). The abnormal Indian summer monsoon of 2000. Journal of Climate, 16, 1177–1194.CrossRefGoogle Scholar
  23. Levermann, A., Schewe, J., Petoukhov, V., & Held, H. (2009). Basic mechanism for abrupt monsoon transitions. Proceedings of the National Academy of Sciences, 106(49), 20572–20577.  https://doi.org/10.1073/pnas.0901414106.CrossRefGoogle Scholar
  24. Liang, X. Z., Xu, M., Gao, W., Kunkel, K., Slusser, J., Dai, Y., et al. (2005). Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. Journal of Geophysical Research, 110, D11107.  https://doi.org/10.1029/2004JD005579.CrossRefGoogle Scholar
  25. Liang, X.-Z., Xu, M., Yuan, X., Ling, T., Choi, H. I., Zhang, F., et al. (2012). Regional climate-weather research and forecasting model (CWRF). Bulletin of the American Meteorological Society, 93, 1363–1387.  https://doi.org/10.1175/bams-d-11-00180.CrossRefGoogle Scholar
  26. Loveland, T. R., Merchant, J. W., Reed, B. C., Brown, J. F., Ohlen, D. O., Olson, P., et al. (1995). Seasonal land cover regions of the United States. Annals of the American Association of Geographers, 85, 339–355.CrossRefGoogle Scholar
  27. McCumber M. C. (1980). A numerical simulation of the influence of heat and moisture fluxes upon mesoscale circulations. Ph. D Thesis, University of Virginia, p. 255.Google Scholar
  28. Meehl, G. A. (1997). The South Asian monsoon and the tropospheric biennial oscillation. Journal of Climate, 10, 1921–1943.  https://doi.org/10.1175/1520-0442(1997)010<1921:TSAMAT>2.0.CO;2.CrossRefGoogle Scholar
  29. Miller, D. A., & White, R. A. (1998). A Conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Earth Interactions.  https://doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.CrossRefGoogle Scholar
  30. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102(D14), 16663–16682.  https://doi.org/10.1029/97JD00237.CrossRefGoogle Scholar
  31. Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contributions of the Geophysical Institute Academy of Sciences USSR, 151, 163–187.Google Scholar
  32. Mujumdar, M., Preethi, B., Sabin, T. P., Ashok, K., Saeed, S., Pai, D. S., et al. (2012). The Asian summer monsoon response to the La Niña event of 2010. Meteorological Applications, 19, 216–225.  https://doi.org/10.1002/met.1301.CrossRefGoogle Scholar
  33. Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., & Gulden, L. E. (2005). A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. Journal of Geophysical Research, 110, D21106.  https://doi.org/10.1029/2005JD006111.CrossRefGoogle Scholar
  34. Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research, 116, D12109.  https://doi.org/10.1029/2010JD015139.CrossRefGoogle Scholar
  35. Noh, Y., Cheon, W. G., Hong, S.-Y., & Raasch, S. (2003). Improvement of the K-proile model for the planetary boundary layer based on large eddy simulation data. Boundary Layer Meteorology, 107, 401–427.  https://doi.org/10.1023/a:1022146015946.CrossRefGoogle Scholar
  36. Pai, D. S., & Sreejith, O.P. (2011). Global and regional circulation anomalies: A report. In: A. Tyagi, A. B. Mazumdar, D. S. Pai (Eds) IMD Met. Monograph No. Synoptic Meteorology No. 10/2011, IMD, pp. 63–78.Google Scholar
  37. Pan, H.-L., & Mahrt, L. (1987). Interaction between soil hydrology and boundary layer development. Boundary Layer Meteorology, 38, 185–202.  https://doi.org/10.1007/bf00121563.CrossRefGoogle Scholar
  38. Pielke, R. A. (2001). Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall. Reviews of Geophysics, 39(2), 151–177.  https://doi.org/10.1029/1999RG000072.CrossRefGoogle Scholar
  39. Prasanna, V. (2014). Impact of monsoon rainfall on the total food grain yield over India. Journal of Earth System Science, 123(5), 1129–1145.  https://doi.org/10.1007/s12040-014-0444-x.CrossRefGoogle Scholar
  40. Rajeevan, M., Bhate, J., Kale, J. D., & Lal, B. (2006). High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Current Science, 91, 293–306.Google Scholar
  41. Rajeevan, M., Rohini, P., Niranjan Kumar, K., Srinivasan, J., & Unnikrishnan, C. K. (2013). A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Climate Dynamics, 40, 637.  https://doi.org/10.1007/s00382-012-1374-4.CrossRefGoogle Scholar
  42. Raju, A., Parekh, A., Chowdary, J. S., & Gnanaseelan, C. (2015a). Assessment of the Indian summer monsoon in the WRF regional climate model. Climate Dynamics, 44, 3077–3100.  https://doi.org/10.1007/s00382-014-2295-1.CrossRefGoogle Scholar
  43. Raju, A., Parekh, A., Chowdary, J. S., & Gnanaseelan, C. (2017). Reanalysis of the Indian summer monsoon: Four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework. Climate Dynamics, 4, 4.  https://doi.org/10.1007/s00382-017-3781-z.CrossRefGoogle Scholar
  44. Raju, A., Parekh, A., & Gnanaseelan, C. (2014). Evolution of vertical moist thermodynamic structure associated with the Indian summer monsoon in a regional climate model. Pure and Applied Geophysics, 171, 1499–1518.  https://doi.org/10.1007/s00024-013-0697-3.CrossRefGoogle Scholar
  45. Raju, A., Parekh, A., Kumar, P., & Gnanaseelan, C. (2015b). Evaluation of the impact of AIRS profiles on prediction of Indian summer monsoon using WRF variational data assimilation system. Journal of Geophysical Research Atmospheres.  https://doi.org/10.1002/2014JD023024.CrossRefGoogle Scholar
  46. Raju, A., Parekh, A., Sreenivas, P., Chowdary, J. S., & Gnanaseelan, C. (2015c). Estimation of improvement in Indian summer monsoon circulation by assimilation of temperature pro les in WRF model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.  https://doi.org/10.1109/JSTARS.2015.2410338.CrossRefGoogle Scholar
  47. Rosero, E., Yang, Z.-L., Gulden, L. E., Niu, G.-Y., & Gochis, D. J. (2009). Evaluating enhanced hydrological representations in Noah LSM over transition zones: Implications for model development. Journal of Hydrometeorology, 10(3), 600–622.  https://doi.org/10.1175/2009jhm1029.1.CrossRefGoogle Scholar
  48. Rosero, E., Yang, Z.-L., Wagener, T., Gulden, L. E., Yatheendradas, S., & Niu, G.-Y. (2010). Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. Journal of Geophysical Research, 115, D03106.  https://doi.org/10.1029/2009JD012035.CrossRefGoogle Scholar
  49. Sabin, T. P., Krishnan, R., Ghattas, J., Denvil, S., Dufresne, J.-F., Hourdin, F., et al. (2013). High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Climate Dynamics, 41, 173–194.  https://doi.org/10.1007/s00382-012-1658-8.CrossRefGoogle Scholar
  50. Saha, S. K., Halder, S., Rao, A. S., & Goswami, B. N. (2012). Modulation of ISOs by land-atmosphere feedback and contribution to the interannual variability of Indian summer monsoon. Journal of Geophysical Research, 117, D13101.  https://doi.org/10.1029/2011JD017291.CrossRefGoogle Scholar
  51. Shukla, J., & Mintz, Y. (1982). Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 1498–1501.  https://doi.org/10.1126/science.215.4539.1498.CrossRefGoogle Scholar
  52. Simmons, A., Uppala, S., Dee, D., & Kobayashi, S. (2007). ERA-Interim: New ECMWF reanalysis products from 1989 on-wards. ECMWF Newsletter, No. 110, ECMWF, Reading, UK, pp. 25–35.Google Scholar
  53. Singh, A. P., Mohanty, U. C., Sinha, P., & Mandal, M. (2007). Influence of different land surface processes on Indian Summer Monsoon circulation. Natural Hazards, 42, 423–438.  https://doi.org/10.1007/s11069-006-9079-9.CrossRefGoogle Scholar
  54. Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., et al. (2008). A description of the advanced research WRF version 2. NCAR technical note, NCAR/TN-468? STR. Boulder: Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research.Google Scholar
  55. Smirnova, T. G., Brown, J. M., & Benjamin, S. G. (1997). Performance of Different Soil Model Configurations in Simulating Ground Surface Temperature and Surface Fluxes. Monthly Weather Review, 125, 1870–1884.  https://doi.org/10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.CrossRefGoogle Scholar
  56. Smirnova, T. G., Brown, J. M., Benjamin, S. G., & Kenyon, J. S. (2016). Modifications to the rapid update cycle land surface model (RUC LSM) available in the weather research and forecasting (WRF) model. Monthly Weather Review, 144, 1851–1865.CrossRefGoogle Scholar
  57. Smirnova, T. G., Brown, J. M., Benjamin, S. G., & Kim, D. (2000). Parameterization of cold-season processes in the MAPS land-surface scheme. Journal of Geophysical Research, 105(D3), 4077–4086.  https://doi.org/10.1029/1999JD901047.CrossRefGoogle Scholar
  58. Srinivas, C. V., Bhaskar Rao, D. V., Hari Prasad, D., Hari Prasad, K. B. R. R., Baskaran, Y. R., & Venkatraman, B. (2014). A study on the influence of the Land Surface Processes on the Southwest Monsoon simulations using a Regional Climate model. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-014-0905-9.CrossRefGoogle Scholar
  59. Srinivas, C. V., Hari Prasad, D., Bhaskar Rao, D. V., Anjaneyulu, Y., Baskaran, R., & Venkatraman, B. (2013). Simulation of the Indian summer monsoon regional climate using advanced research WRF model. International Journal of Climatology, 33, 1195–1210.  https://doi.org/10.1002/joc.3505.CrossRefGoogle Scholar
  60. Srinivas, C. V., Hari Prasad, D., Bhaskar Rao, D. V., Baskaran, R., & Venkatraman, B. (2015). Simulation of the Indian summer monsoon onset-phase rainfall using a regional model. Annales Geophysicae, 33, 1097–1115.  https://doi.org/10.5194/angeo-33-1097-2015.CrossRefGoogle Scholar
  61. Srinivasan, J., & Smith, G. L. (1996). Meridional migration of tropical convergence zones. Journal of Applied Meteorology, 35, 1189–1202.  https://doi.org/10.1175/1520-0450(1996)035<1189:MMOTCZ>2.0.CO;2.CrossRefGoogle Scholar
  62. Takata, K., Saito, K., & Yasunari, T. (2009). Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proceedings of the National Academy of Sciences of the United States of America, 106, 9586–9589.CrossRefGoogle Scholar
  63. Thiebaux, J., Rogers, E., Wang, W., & Katz, B. (2003). A new high resolution blended real-time global sea surface temperature analysis. Bulletin of the American Meteorological Society, 84, 45–656.  https://doi.org/10.1175/BAMS-84-5-645.CrossRefGoogle Scholar
  64. Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A., & Mahowald, N. M. (2007). Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21, 18.  https://doi.org/10.1029/2006gb002868.CrossRefGoogle Scholar
  65. Unnikrishnan, C. K., Rajeevan, M., Vijayabhaskara Rao, S., & Kumar, Manoj. (2013). Development of a high resolution land surface dataset for the South Asian monsoon region. Current Science, 405, 1235–1246.Google Scholar
  66. Viterbo, P., & Beljaars, A. C. (1995). An improved land surface parameterization scheme in the ECMWF model and its validation. Journal of Climate, 8(11), 2716–2748.  https://doi.org/10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2.CrossRefGoogle Scholar
  67. Wang, Y., Leung, L. R., McGregor, J. L., Lee, D. K., Wang, W. C., Ding, Y., et al. (2004). Regional climate modeling: Progress, challenges, and prospects. Journal of the Meteorological Society of Japan, 82, 1599–1628.CrossRefGoogle Scholar
  68. Wang, B., & Yang, H. (2008). Hydrological issues in lateral boundary conditions for regional climate modeling: Simulation of East Asian summer monsoon in 1998. Climate Dynamics, 31, 477.  https://doi.org/10.1007/s00382-008-0385-7.CrossRefGoogle Scholar
  69. Webster, P. J. (1983). Mechanisms of monsoon low-frequency variability: Surface hydrological effects. Journal of Atmospheric Science, 40, 2110–2124.  https://doi.org/10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2.CrossRefGoogle Scholar
  70. Webster, P. J., Palmer, T., Yanai, M., Tomas, R., Magana, V., Shukla, J., et al. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103(C7), 14451–14510.CrossRefGoogle Scholar
  71. Xu, M., Liang, X. Z., Samel, A., & Gao, W. (2014). MODIS consistent vegetation parameter specifications and their impacts on regional climate simulations. Journal of Climate, 27(22), 8578–8596.  https://doi.org/10.1175/JCLI-D-14-00082.1.CrossRefGoogle Scholar
  72. Xu, X., Lu, C., Shi, X., & Ding, Y. (2010). Large-scale topography of China: A factor for the seasonal progression of the Meiyu rainband? Journal of Geophysical Research, 115, D02110.  https://doi.org/10.1029/2009JD012444.CrossRefGoogle Scholar
  73. Yanai, M. H., Li, C. F., & Song, Z. S. (1992). Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer Monsoon. Journal of the Meteorological Society of Japan, 70(1B), 319–351.CrossRefGoogle Scholar
  74. Yanai, M., & Wu, G. (2006). Effects of the Tibetan plateau. In B. Wang (Ed.), The Asian monsoon. Berlin: Springer.Google Scholar
  75. Yang, Z.-L., Dickinson, R. E., Henderson-Sellers, A., & Pitman, A. J. (1995). Preliminary study of spin-up processes in land surface models with the First stage data of project for intercomparison of land surface parameterization schemes phase 1(a). Journal of Geophysical Research, 100(D8), 16553–16578.  https://doi.org/10.1029/95JD01076.CrossRefGoogle Scholar
  76. Yuan, X., & Liang, X. Z. (2011). Evaluation of a conjunctive surface-subsurface process model (CSSP) over the contiguous United States at regional-local scales. Journal of Hydrometeorology, 12(4), 579–599.  https://doi.org/10.1175/2010JHM1302.1.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  2. 2.Atmospheric and Oceanic Sciences GroupSpace Applications CentreAhmedabadIndia

Personalised recommendations