Advertisement

Pure and Applied Geophysics

, Volume 175, Issue 10, pp 3539–3553 | Cite as

PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures

  • Khalid S. Essa
  • Mahmoud Elhussein
Article

Abstract

A new efficient approach to estimate parameters that controlled the source dimensions from magnetic anomaly profile data in light of PSO algorithm (particle swarm optimization) has been presented. The PSO algorithm has been connected in interpreting the magnetic anomaly profiles data onto a new formula for isolated sources embedded in the subsurface. The model parameters deciphered here are the depth of the body, the amplitude coefficient, the angle of effective magnetization, the shape factor and the horizontal coordinates of the source. The model parameters evaluated by the present technique, generally the depth of the covered structures were observed to be in astounding concurrence with the real parameters. The root mean square (RMS) error is considered as a criterion in estimating the misfit between the observed and computed anomalies. Inversion of noise-free synthetic data, noisy synthetic data which contains different levels of random noise (5, 10, 15 and 20%) as well as multiple structures and in additional two real-field data from USA and Egypt exhibits the viability of the approach. Thus, the final results of the different parameters are matched with those given in the published literature and from geologic results.

Keywords

Magnetic anomaly PSO algorithm the depth RMS 

Notes

Acknowledgements

Authors would like to thank Prof. A. Rabinovich; C. Braitenberg; R. Dmowska Editors-in-Chief, Prof. Dr. Colin Farquharson, the Editor, Prof. Rodrigo Bijani, reviewer, and the other capable reviewer for their constructive comments for enhancing our original manuscript. Thanks are also due to Prof. Salah Mehanee, Geophysics Department, Faculty of Science, Cairo University, for his help and constant encouragement.

References

  1. Abdelrahman, E. M., Abo-ezz, E. R., & Essa, K. S. (2012). Parametric inversion of residual magnetic anomalies due to simple geometric bodies. Exploration Geophysics, 43, 178–189.CrossRefGoogle Scholar
  2. Abdelrahman, E. M., Abo-Ezz, E. R., Essa, K. S., El-Araby, T. M., & Soliman, K. S. (2007). A new least-squares minimization approach to depth and shape determination from magnetic data. Geophysical Prospecting, 55, 433–446.CrossRefGoogle Scholar
  3. Abdelrahman, E. M., El-Araby, H. M., El-Araby, T. M., & Essa, K. S. (2003). A least-squares minimization approach to depth determination from magnetic data. Pure and Applied Geophysics, 160, 1259–1271.CrossRefGoogle Scholar
  4. Abdelrahman, E. M., & Essa, K. S. (2005). Magnetic interpretation using a least-squares, depth-shape curves method. Geophysics, 70, L23–L30.CrossRefGoogle Scholar
  5. Abdelrahman, E. M., & Essa, K. S. (2015). A new method for depth and shape determinations from magnetic data. Pure and Applied Geophysics, 172, 439–460.CrossRefGoogle Scholar
  6. Abdelrahman, E. M., Essa, K. S., El-Araby, T., & Abo-Ezz, E. R. (2016). Depth and shape solutions from second moving average residual magnetic anomalies. Exploration Geophysics, 47, 58–66.CrossRefGoogle Scholar
  7. Abdelrahman, E. M., & Sharafeldin, S. M. (1996). An iterative least-squares approach to depth determination from residual magnetic anomalies due to thin dikes. Journal of Applied Geophysics, 34, 213–220.CrossRefGoogle Scholar
  8. Abdelrahman, E. M., Soliman, K. S., El-Araby, T. M., Abo-Ezz, E. R., & Essa, K. S. (2009). A least-squares standard deviation method to interpret magnetic anomalies due to thin dikes. Near Surface Geophysics, 7, 41–46.CrossRefGoogle Scholar
  9. Abedi, M., Gholami, A., & Norouzi, G. H. (2013). A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran. Computers and Geosciences, 52, 269–280.CrossRefGoogle Scholar
  10. Abo-Ezz, E. R., & Essa, K. S. (2016). A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula. Pure and Applied Geophysics, 173, 1265–1278.CrossRefGoogle Scholar
  11. Abubakar, R., Muxworthy, A. R., Sephton, M. A., Southern, P., Watson, J. S., Fraser, A. J., et al. (2015). Formation of magnetic minerals at hydrocarbon-generation conditions. Marine and Petroleum Geology, 68, 509–519.CrossRefGoogle Scholar
  12. Al-Garni, M. A. (2011). Magnetic and DC resistivity investigation for groundwater in a complex subsurface terrain. Arabian Journal of Geosciences, 4, 385–400.CrossRefGoogle Scholar
  13. Araffa, S. A. S., Helaly, A. S., Khozium, A., Lala, A. M. S., Soliman, S. A., & Hassan, N. M. (2015). Delineating groundwater and subsurface structures by using 2D resistivity, gravity and 3D magnetic data interpretation around Cairo-Belbies Desert road, Egypt. NRIAG Journal of Astronomy and Geophysics, 4, 134–146.CrossRefGoogle Scholar
  14. Asfahani, J., & Tlas, M. (2007). A robust nonlinear inversion for the interpretation of magnetic anomalies caused by faults, thin dikes and spheres like structure using stochastic algorithms. Pure and Applied Geophysics, 164, 2023–2042.CrossRefGoogle Scholar
  15. Balkaya, C., Ekinci, Y. L., Göktürkler, G., & Turan, S. (2017). 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. Journal of Applied Geophysics, 136, 372–386.CrossRefGoogle Scholar
  16. Bektas, Ö., Ravat, D., Büyüksaraç, A., Bilim, F., & Ateş, A. (2007). Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics, 164, 976–986.CrossRefGoogle Scholar
  17. Biswas, A. (2015). Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization. Geoscience Frontiers, 6, 875–893.CrossRefGoogle Scholar
  18. Biswas, A., Parija, M. P., & Kumar, S. (2017). Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Annals of Geophysics, 60(2), G0218.CrossRefGoogle Scholar
  19. Boschetti, F., Denith, M. C., & List, R. D. (1997). Inversion of potential field data by genetic algorithms. Geophysical Prospecting, 45, 461–478.CrossRefGoogle Scholar
  20. Bresco, M., Raiconi, G., Barone, F., DeRosa, R., & Milano, L. (2005). Genetic approach helps to speed classical Price algorithm for global optimization. Soft Computing, 9, 525–535.CrossRefGoogle Scholar
  21. Cedeno, W., & Agrafiotis, D. K. (2003). Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression. Journal of Computer Aided Molecular Design, 17, 255–263.CrossRefGoogle Scholar
  22. Chau, W. K. (2008). Application of a particle swarm optimization algorithm to hydrological problems. In L. N. Robinson (Ed.), Water Resources Research Progress (pp. 3–12). New York: Nova Science Publishers Inc.Google Scholar
  23. Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceedings of the 1st European conference on artificial life (pp. 134–142).Google Scholar
  24. Davis, K., Yaoguo Li, Y., & Nabighian, M. (2010). Automatic detection of UXO magnetic anomalies using extended Euler deconvolution. Geophysics, 75(3), G13–G20.CrossRefGoogle Scholar
  25. Di Maio, R., Rani, P., Piegari, E., & Milano, L. (2016). Self-potential data inversion through a genetic-price algorithm. Computers and Geosciences, 94, 86–95.CrossRefGoogle Scholar
  26. Donelli, M., Franceschini, G., Martini, A., & Mass, A. (2006). An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems. IEEE Transactions on Geoscience and Remote Sensing, 44, 298–312.CrossRefGoogle Scholar
  27. Dong, P., Fan, J. L., Liu, C. H., Chen, G. W., Wang, L. S., Sun, B., et al. (2007). Magnetic anomaly characteristics out of reinforcement cage in cast-in situ pile. Progress in Geophysics, 22(5), 1660–1665. (in Chinese).Google Scholar
  28. Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: Developments, applications and resources. In Proceedings of the congress on evolutionary computation, Seoul, Korea (pp. 81–86).Google Scholar
  29. Ekinci, Y. L., Balkaya, Ç., Göktürkler, G., & Turan, S. (2016). Model parameter estimations from residual gravity anomalies due to simple-shaped sources using differential evolution algorithm. Journal of Applied Geophysics, 129, 133–147.CrossRefGoogle Scholar
  30. Ekinci, Y. L., Balkaya, Ç., Şeren, A., Kaya, M. A., & Lightfoot, C. S. (2014). Geomagnetic and geoelectrical prospection for buried archaeological remains on the Upper City of Amorium, a Byzantine City in Midwestern Turkey. Journal of Geophysics and Engineering, 11, 015012.CrossRefGoogle Scholar
  31. Essa, K. S., & Elhussein, M. (2017a). A new approach for the interpretation of magnetic data by a 2-D dipping dike. Journal of Applied Geophysics, 136, 431–443.CrossRefGoogle Scholar
  32. Essa, K. S., & Elhussein, M. (2017b). 2D dipping dike magnetic data interpretation using a robust particle swarm optimization. Geoscientific Instrumentation, Methods and Data Systems, Discuss..  https://doi.org/10.5194/gi-2017-39.CrossRefGoogle Scholar
  33. Farquharson, C. G., & Craven, J. A. (2009). Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada. Journal of Applied Geophysics, 68, 450–458.CrossRefGoogle Scholar
  34. Fedi, M. (2007). DEXP: A fast method to determine the depth and the structural index of potential fields sources. Geophysics, 72, I1–I11.CrossRefGoogle Scholar
  35. Gay, P. (1963). Standard curves for interpretation of magnetic anomalies over long tabular bodies. Geophysics, 28, 161–200.CrossRefGoogle Scholar
  36. Gay, P. (1965). Standard curves for the interpretation of magnetic anomalies over long horizontal cylinders. Geophysics, 30, 818–828.CrossRefGoogle Scholar
  37. Gündoğdu, N. Y., Candansayar, M. E., & Genç, E. (2017). Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods. JEEG, 22(2), 177–189.CrossRefGoogle Scholar
  38. He, J., & Guo, H. (2013). A modified particle swarm optimization algorithm. Telkomnika, 11(10), 6209–6215.Google Scholar
  39. Ivakhnenkoa, O. P., Abirova, R., & Logvinenkoc, A. (2015). New method for characterisation of petroleum reservoir fluid mineral deposits using magnetic analysis. Energy Procedia, 76, 454–462.CrossRefGoogle Scholar
  40. Juang, C. F. (2004). A hybrid genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34, 997–1006.CrossRefGoogle Scholar
  41. Kaftan, I. (2017). Interpretation of magnetic anomalies using a genetic algorithm. Acta Geophysica, 65, 627–634.CrossRefGoogle Scholar
  42. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In IEEE international conference on neural networks (Perth, Australia): IEEE Service Center, PiscatawaY, NJ, lV (pp. 1942–1948).Google Scholar
  43. Ku, C. C., & Sharp, J. A. (1983). Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt’s inverse modeling. Geophysics, 48, 754–774.CrossRefGoogle Scholar
  44. Lines, L. R., & Treitel, S. (1984). A review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting, 32, 159–186.CrossRefGoogle Scholar
  45. Mehanee, S. (2014). Accurate and efficient regularized inversion approach for the interpretation of isolated gravity anomalies. Pure and Applied Geophysics, 171, 1897–1937.CrossRefGoogle Scholar
  46. Mehanee, S., & Essa, K. S. (2015). 2.5D regularized inversion for the interpretation of residual gravity data by a dipping thin sheet: Numerical examples and case studies with an insight on sensitivity and non-uniqueness. Earth Planets Space, 67, 130.CrossRefGoogle Scholar
  47. Mehanee, S., Essa, K. S., & Smith, P. D. (2011). A rapid technique for estimating the depth and width of a two-dimensional plate from self-potential data. Journal of Geophysics and Engineering, 8, 447–456.CrossRefGoogle Scholar
  48. Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., et al. (2005). The historical development of the magnetic method in exploration. Geophysics, 70(6), 33–61.CrossRefGoogle Scholar
  49. Nyabeze, P. K., & Gwavava, O. (2016). Investigating heat and magnetic source depths in the Soutpansberg Basin, South Africa: Exploring the Soutpansberg Basin Geothermal Field. Geothermal Energy, 4, 8.CrossRefGoogle Scholar
  50. Pallero, J. L. G., Fernández-Muñiz, M. Z., Cernea, A., Álvarez-Machancoses, Ó., Pedruelo-González, L. M., Bonvalot, S., et al. (2018). Particle swarm optimization and uncertainty assessment in inverse problems. Entropy, 20(2), 96.CrossRefGoogle Scholar
  51. Parsopoulos, K. E., & Vrahatis, M. N. (2002). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1, 235–306.CrossRefGoogle Scholar
  52. Peksen, E., Yas, T., & Kıyak, A. (2014). 1-D DC resistivity modeling and interpretation in anisotropic media using particle swarm optimization. Pure and Applied Geophysics, 171(9), 2371–2389.CrossRefGoogle Scholar
  53. Pilkington, M. (2006). Joint inversion of gravity and magnetic data for two-layer models. Geophysics, 71, L35–L42.CrossRefGoogle Scholar
  54. Rao, B. S. R., Murthy, I. V. R., & Rao, C. V. (1973). A computer program for interpreting vertical magnetic anomalies of spheres and horizontal cylinders. Pure and Applied Geophysics, 110, 2056–2065.CrossRefGoogle Scholar
  55. Rao, B. S. R., Rao, T. K. S. P., & Murthy, A. S. K. (1977). A note on magnetized spheres. Geophysical Prospecting, 25, 746–757.CrossRefGoogle Scholar
  56. Rao, T., & Subrahmanyam, M. (1988). Characteristic curves for the inversion of magnetic-anomalies of spherical ore bodies. Pure and Applied Geophysics, 126, 69–83.CrossRefGoogle Scholar
  57. Rao, T. K. S. P., Subrahmanyam, M., & Srikrishna Murthy, A. (1986). Nomograms for the direct interpretation of magnetic anomalies due to long horizontal cylinders. Geophysics, 51, 2156–2159.CrossRefGoogle Scholar
  58. Robinson, J., & Rahamat-Samii, Y. (2004). Particle swarm optimization in electromagnetic. IEEE Transactions on Antennas and Propagation, 52, 397–407.CrossRefGoogle Scholar
  59. Salem, A. (2005). Interpretation of magnetic data using analytic signal derivatives. Geophysical Prospecting, 53, 75–82.CrossRefGoogle Scholar
  60. Salem, A., Aboud, E., Elsirafy, A., & Ushijima, K. (2005). Structural mapping of Quseir area, northern Red Sea, Egypt, using high-resolution aeromagnetic data. Earth, Planets and Space, 57, 761–765.CrossRefGoogle Scholar
  61. Salem, A., Elsirafi, A., & Ushijima, K. (1999). Design and application of high-resolution aeromagnetic survey over Gebel Duwi area and its offshore extension, Egypt. Memoirs of the Faculty of Engineering, Kyushu University, 59, 201–213.Google Scholar
  62. Sen, M. K., & Stoffa, P. L. (2013). Global optimization methods in geophysical inversion (p. 279). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  63. Shafiqullah, M., & Langlois, J. D. (1978). The Pima mining district Arizona—A geochronologic update. In New Mexico geological society guidebook 29th annual fall field conference guidebook (pp. 321–327).Google Scholar
  64. Singh, A., & Biswas, A. (2016). Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Natural Resources Research, 25(3), 297–314.CrossRefGoogle Scholar
  65. Srivastava, S., Datta, D., Agarwal, B. N. P., & Mehta, S. (2014). Applications of ant colony optimization in determination of source parameters from total gradient of potential fields. Near Surface Geophysics, 12, 373–389.Google Scholar
  66. Sweilam, N. H., El-Metwally, K., & Abdelazeem, M. (2007). Self potential signal inversion to simple polarized bodies using the particle swarm optimization method: A visibility study. Journal of Applied Geophysics, 6, 195–208.Google Scholar
  67. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Philadelphia: Society for Industrial and Applied Mathematics (SIAM)CrossRefGoogle Scholar
  68. Thompson, D. T. (1982). EULDPH—A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.CrossRefGoogle Scholar
  69. Tlas, M., & Asfahani, J. (2011). Fair function minimization for interpretation of magnetic anomalies due to thin dikes, spheres and faults. Journal of Applied Geophysics, 75, 237–243.CrossRefGoogle Scholar
  70. Tlas, M., & Asfahani, J. (2015). The simplex algorithm for best-estimate of magnetic parameters related to simple geometric-shaped structures. Mathematical Geosciences, 47, 301–316.CrossRefGoogle Scholar
  71. Toushmalani, R. (2013). Gravity inversion of a fault by particle swarm optimization (PSO). Springer Plus, 2, 315.CrossRefGoogle Scholar
  72. van den Bergh, F., & Engelbrecht, A. P. (2004). A Cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 225–239.CrossRefGoogle Scholar
  73. Wachowiak, M. P., Smolıkova, R., Zheng, Y., Zurada, J. M., & Elmaghraby, A. S. (2004). An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 289–301.CrossRefGoogle Scholar
  74. Yin, G., Zhang, Y., Fan, H., Ren, G., & Li, Z. (2017). Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Exploration Geophysics, 48(1), 67–75.CrossRefGoogle Scholar
  75. Zhdanov, M. S. (2002). Geophysical inversion theory and regularization problems (p. 633). Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Geophysics Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations