2-D Density and Directional Analysis of Fault Systems in the Zagros Region (Iran) on a Regional Scale

Article
  • 11 Downloads

Abstract

In this paper, 2-D spatial variation of the frequency and length density and frequency–length relation of large-scale faults in the Zagros region (Iran), as a typical fold-and-thrust belt, were examined. Moreover, the directional analysis of these faults as well as the scale dependence of the orientations was studied. For this purpose, a number of about 8000 faults with L ≥ 1.0 km were extracted from the geological maps covering the region, and then, the data sets were analyzed. The overall pattern of the frequency/length distribution of the total faults of the region acceptably fits with a power-law relation with exponent 1.40, with an obvious change in the gradient in L = 12.0 km. In addition, maps showing the spatial variation of fault densities over the region indicate that the maximum values of the frequency and length density of the faults are attributed to the northeastern part of the region and parallel to the suture zone, respectively, and the fault density increases towards the central parts of the belt. Moreover, the directional analysis of the fault trends gives a dominant preferred orientation trend of 300°–330° and the assessment of the scale dependence of the fault directions demonstrates that larger faults show higher degrees of preferred orientations. As a result, it is concluded that the evolutionary path of the faulting process in this region can be explained by increasing the number of faults rather than the growth in the fault lengths and also it seems that the regional-scale faults in this region are generated by a nearly steady-state tectonic stress regime.

Keywords

Directional analysis fault density fault systems fractures scale distribution spatial pattern Zagros 

Notes

Acknowledgements

This study has been partially supported by the Damghan University Research Council. Dr. Guy Ouillon provided valuable suggestions that improved an earlier version of the manuscript, and his useful suggestions and helpful comments are gratefully acknowledged. The authors are indebted to Dr. R.S. Zazoun, Dr. A. Ghabeishavi, and Dr. A. Rahmani for their assistance in gathering the data and their constructive suggestions. Dr. E. Mohamadi, Mr. O. Baizidi, and Mr. H. Zare are thanked for their useful discussions and suggestions. We would like to thank two anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

References

  1. Ackermann, R. V., Schlische, R. W., & Withjack, M. O. (2001). The geometric and statistical evolution of normal fault systems: an experimental study of the effects of mechanical layer thickness on scaling laws. Journal of Structural Geology, 23, 1803–1819.CrossRefGoogle Scholar
  2. Alavi, M., & Mahdavi, M. A. (1994). Stratigraphy and structure of the Nahavand region in western Iran, and their implications for the Zagros tectonics. Geological Magazine, 131, 43–47.CrossRefGoogle Scholar
  3. Authemayou, C., Bellier, O., Chardon, D., Malekzade, Z., & Abassi, M. (2005). Role of Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran). Comptes Rendus Geoscience, 337(5), 539–545.CrossRefGoogle Scholar
  4. Bachmanov, D. M., Trifonova, V. G., Hessami, Kh, Kozhurina, A. I., Ivanovac, T. P., Rogozhind, E. A., et al. (2004). Active faults in the Zagros and central Iran. Tectonophysics, 380, 221–241.CrossRefGoogle Scholar
  5. Barton, C. C. (1995). Fractal analysis of scaling and spatial clustering of fractures. In C. C. Barton & P. R. La Pointe (Eds.), Fractals in the earth sciences (pp. 141–178). New York: Springer Science.CrossRefGoogle Scholar
  6. Berberian, M. (1976). Contribution on the seismotectonics of Iran: Part I (p. 517). Tehran: Geological Survey of Iran.Google Scholar
  7. Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., et al. (2001). Scaling of fracture systems in geological media. Reviews of Geophysics, 39, 347–383.CrossRefGoogle Scholar
  8. Bour, O., & Davy, P. (1998). On the connectivity of three-dimensional fault networks. Water Resources Research, 34(10), 2611–2622.CrossRefGoogle Scholar
  9. Bour, O., Davy, P., Darcel, C., & Odling, N. (2002). A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway). Journal of Geophysical Research, 107(B6), 1–12.CrossRefGoogle Scholar
  10. Castaing, C., Halawani, M. A., Gervais, F., Chilès, J. P., Genter, A., Bourgine, B., et al. (1996). Scaling relationships in intraplate fracture systems related to red sea rifting. Tectonophysics, 261(4), 291–314.CrossRefGoogle Scholar
  11. Chilès, J. P. (1988). Fractal and geostatistical methods for modeling of a fracture network. Mathematical Geology, 20(6), 631–654.CrossRefGoogle Scholar
  12. Cladouhos, T. T., & Marrett, R. (1996). Are fault growth and linkage models consistent with power-law distributions of fault lengths? Journal of Structural Geology, 18, 281–293.CrossRefGoogle Scholar
  13. Cowie, P. A., & Scholz, C. H. (1992a). Physical explanation for the displacement-length relationship of fault using a post-yield fracture mechanics model. Journal of Structural Geology, 14(10), 1133–1148.CrossRefGoogle Scholar
  14. Cowie, P. A., & Scholz, C. H. (1992b). Displacement-length scaling relationships for faults: data synthesis and discussion. Journal of Structural Geology, 14(10), 1149–1156.CrossRefGoogle Scholar
  15. Cruden, D. M. (1977). Describing the size of discontinuities. Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14, 133–137.CrossRefGoogle Scholar
  16. Davy, P. (1993). On the fault-Length frequency distribution of the San Andreas fault system. Journal of Geophysical Research, 98(B7), 12141–12151.CrossRefGoogle Scholar
  17. Davy, P., Sornette, A., & Sornette, D. (1990). Some consequences of a proposed fractal nature of continental faulting. Nature, 348, 56–58.CrossRefGoogle Scholar
  18. de Joussineau, G., & Aydin, A. (2007). The evolution of the damage zone with fault growth in sandstone and its multiscale characteristics. Journal of Geophysical Research, 112, B12401.  https://doi.org/10.1029/2006JB004711.CrossRefGoogle Scholar
  19. Dershowitz, W. S., & Einstein, H. H. (1988). Characterizing rock joint geometry with joint system models. Journal of Rock Mech Rock Engineering, 21, 21–51.CrossRefGoogle Scholar
  20. Escuder Viruete, J., Carbonell, R., Jurado, M. J., Marti, D., & Perez-Estaun, A. (2001). Two-dimensional geostatistical modeling and prediction of the fracture system in the Albala Granitic Pluton, WS Iberian Massif, Spain. Journal of Structural Geology, 23, 2011–2023.CrossRefGoogle Scholar
  21. Falcon, N. L. (1969). Problems of the relationship between surface structure and deep displacements illustrated by the Zagros range. In P. E. Kent, G. E. Satterthwaite, & A. M. Spencer (Eds.), Time and place in orogeny (Vol. 3, pp. 9–22). London: Geological Society of London. (special publication).Google Scholar
  22. Falcon, N. L. (1974). Southern Iran: Zagros Mountains. Geological Society, London, Special Publication, 4, 199–211.CrossRefGoogle Scholar
  23. Gillespie, P. A., Howard, C. B., Walsh, J. J., & Waterson, J. (1993). Measurement and characterization of spatial distributions of fractures. Tectonophysics, 226, 113–141.CrossRefGoogle Scholar
  24. Gupta, A., & Scholz, C. H. (2000). Brittle strain regime transition in the Afar depression: implications for fault growth and seafloor spreading. Geology, 28, 1087–1090.CrossRefGoogle Scholar
  25. Haynes, S. J., & McQuillan, H. (1974). Evolution of the Zagros suture zone, southern Iran. Geological Society of America Bulletin, 85(5), 739–744.CrossRefGoogle Scholar
  26. Hessami, Kh, Koyi, H. A., & Talbot, C. J. (2001). The significance of strike-slip faulting in the basement of the Zagros fold and thrust belt. Journal of Petrol Geology, 24(1), 5–28.CrossRefGoogle Scholar
  27. Hirata, T. (1989). Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales. Pure and Applied Geophysics, 121, 157–170.CrossRefGoogle Scholar
  28. Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26, 503–517.CrossRefGoogle Scholar
  29. Knipe, R. J., Fisher, Q. J., Jones, J., Clennell, M. B., Farmer, A. B., Harrison, A., et al. (1998). Fault seal analysis: successful methodologies, application and future directions. Norwegian Petroleum Society, Special Publication, 7, 15–40.CrossRefGoogle Scholar
  30. Koike, K., & Ichikawa, Y. (2006). Spatial correlation structures of fracture systems for deriving a scaling law and modeling fracture distributions. Computers & Geosciences, 32, 1079–1095.CrossRefGoogle Scholar
  31. Koop, W. J., & Stoneley, R. (1982). Subsidence history of the middle east Zagros basin, permian to recent. Philosophical Transactions of the Royal Society of London, Series A, 305, 149–168.CrossRefGoogle Scholar
  32. Lacombe, O., Bellahsen, N., & Mouthereau, F. (2011). Fracture patterns in the Zagros simply folded belt (Fars, Iran): constraints on early collisional tectonic history and role of basement faults. Geological Magazine, 148, 940–963.CrossRefGoogle Scholar
  33. Lobatskaya, R. M., & Strelchenko, I. P. (2016). GIS-based analysis of fault patterns in urban areas: a case study of Irkutsk city, Russia. Geoscience Frontiers, 7, 287–294.CrossRefGoogle Scholar
  34. Marchegiani, L., Van Dijk, J. P., Gillespie, E., Tondi, E., & Cello, G. (2006). Scaling properties of the dimensional and spatial characteristics of fault and fracture systems in the Majella Mountain, central Italy. In G. Cello & B. D. Malamud (Eds.), Fractal analysis for natural hazards (Vol. 261, pp. 113–131). London: Geological Society. (special publication).Google Scholar
  35. McGrath, T. T., & Davidson, R. (1996). Are fault growth and linkage models consistent with power-law distributions of fault lengths? Journal of Structural Geology, 18, 281–293.CrossRefGoogle Scholar
  36. McQuillan, H. (1973). Small-scale fracture density in asmari formation of southwest Iran and its relation to bed thickness and structural setting. AAPG Bull, 57, 2367–2385.Google Scholar
  37. McQuillan, H. (1974). Fracture patterns on the kuh-e asmari anticline, southwest Iran. AAPG Bull, 58, 236–246.Google Scholar
  38. Mitra, S. (2002). Fold-accommodation faults. AAPG Bull, 86, 671–693.Google Scholar
  39. Mobasher, K., & Babaie, H. (2008). Kinematic significance of fold- and fault-related fracture systems in the Zagros mountains, southern Iran. Tectonophysics, 451, 156–169.CrossRefGoogle Scholar
  40. Nanjo, K., & Nagahama, H. (2000). Spatial distribution of aftershocks and the fractal structure of active fault systems. Pure and Applied Geophysics, 157, 575–588.CrossRefGoogle Scholar
  41. Nedham, T., Yielding, G., & Fox, R. (1996). Fault propagation description and prediction using examples from the offshore UK. Journal of Structural Geology, 18, 155–167.CrossRefGoogle Scholar
  42. Nieto-Samaniego, A. F., Alaniz-Alvarez, S. A., Tolson, G., Oleshko, K., Korvin, G., Xu, S. S., et al. (2005). Spatial distribution, scaling and self-similar behavior of fracture arrays in the los planes fault, baja california sur, Mexico. Pure and Applied Geophysics, 162, 805–826.CrossRefGoogle Scholar
  43. Ouillon, G., & Sornette, D. (1996). Unbiased multifractal analysis application to fault patterns. Geophysical Research Letters, 23, 3409–3412.CrossRefGoogle Scholar
  44. Peacock, D. C. P. (2001). The temporal relationship between joints and faults. Journal of Structural Geology, 23, 329–341.CrossRefGoogle Scholar
  45. Pickering, G., Bull, J. M., & Sanderson, D. J. (1995). Sampling power law distributions. Tectonophysics, 248, 1–20.CrossRefGoogle Scholar
  46. Rafiee, A., & Vinches, M. (2008). Application of geostatistical characteristics of rock mass fracture systems in 3D model generation. International Journal of Rock Mechanics and Mining Sciences, 45, 644–652.CrossRefGoogle Scholar
  47. Roy, A., Perfect, E., Dunne, W. M., & McKay, L. D. (2007). Fractal characterization of fracture networks: an improved box-counting technique. Journal of Geophysical Research, 112, B12201.  https://doi.org/10.1029/2006JB004582.CrossRefGoogle Scholar
  48. Sarkarinejad, Kh, & Azizi, A. (2008). Slip partitioning and inclined dextral transpression along the Zagros thrust system, Iran. Journal of Structural Geology, 30, 116–136.CrossRefGoogle Scholar
  49. Schlische, R. W., Young, S. S., Ackermann, R. V., & Gupta, A. (1996). Geometry and scaling relations of a population of very small rift-related normal faults. Geology, 24, 683–686.CrossRefGoogle Scholar
  50. Scholz, C. H., & Cowie, P. A. (1990). Determination of total strain from faulting using slip measurements. Nature, 346, 837–838.CrossRefGoogle Scholar
  51. Sengupta, P., Nath, S. K., Thingbaijam, K. K. S., & Mistri, S. (2011). Fractal analysis of major faults in India on a regional scale. Journal of the Geological Society of India, 78, 226–232.CrossRefGoogle Scholar
  52. Sepehr, M., & Cosgrove, J. W. (2004). Structural framework of the Zagros fold-thrust belt Iran. Marine and Petroleum Geology, 21(7), 829–843.CrossRefGoogle Scholar
  53. Sornette, A., Davy, P., & Sornette, D. (1993). Fault growth in brittle ductile experiments and the mechanics of continental collisions. Journal of Geophysical Research, 98(B7), 12111–12139.CrossRefGoogle Scholar
  54. Spyropoulos, C., Griffth, W. J., Scholz, C. H., & Shaw, B. E. (1999). Experimental evidence for different strain regimes of crack populations in a clay model. Geophysical Research Letters, 26, 1081–1084.CrossRefGoogle Scholar
  55. Srivastava RP (2016) Fractal faults: implications in seismic interpretation and geomodelling. In: V. P. Dimri (Ed.), Fractal solutions for understanding complex systems in earth sciences (pp. 33–46). Springer Earth System Sciences, Springer, Cham.  https://doi.org/10.1007/978-3-319-24675-8_3.CrossRefGoogle Scholar
  56. Stephenson, B. J., Koopman, A., Hillgartner, H., McQuillan, H., Bourne, S., Noad, J. J., et al. (2007). Structural and stratigraphic controls on fold-related fracturing in the Zagros Mountains, Iran: implications for reservoir development. In L. Lonergan, R. J. H. Jolly, K. Rawnsley, & D. J. Sanderson (Eds.), Fractured reservoirs (Vol. 270, pp. 1–21). London: Geological Society London. (special publication).Google Scholar
  57. Stocklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG Bulletin, 52, 1229–1258.Google Scholar
  58. Stöcklin, J. (1974). Possible ancient continental margins in Iran. In C. A. Burk & C. L. Drake (Eds.), The geology of continental margins (pp. 873–888). New York: Springer.CrossRefGoogle Scholar
  59. Stoneley, R. (1981). The geology of the kuh-e dalneshin area of southern Iran, and its bearing on the evolution of southern Tethys. Journal of the Geological Society of London, 138, 509–526.CrossRefGoogle Scholar
  60. Supak, S., Bohnenstiehl, D. R., & Buck, W. R. (2006). Flexing is not stretching: an analogue study of flexure-induced fault populations. Earth and Planetary Science Letters, 246, 125–137.CrossRefGoogle Scholar
  61. Takin, M. (1972). Iranian geology and continental drift in the Middle East. Nature, 235, 147–150.CrossRefGoogle Scholar
  62. Talbot, C. J., & Alavi, M. (1996). The past of a future syntaxis across the Zagros. In G. I. Alsop, D. J. Blundell, & I. Davison (Eds.), Salt tectonics (pp. 89–109). London: Geological Society London. (special publication).Google Scholar
  63. Talebian, M., & Jackson, J. (2004). A reappraisal earthquake focal mechanism and active shortnining in the Zagros mountain of Iran. Geophysics, 156, 506–526.Google Scholar
  64. Tang, C. A., Liang, Z. Z., Zhang, Y. B., Chang, X., Tao, X., Wang, D. G., et al. (2008). Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling. American Journal of Science, 308, 49–72.CrossRefGoogle Scholar
  65. Tavakoli, F., Walpersdorf, A., Authemayou, C., Nankali, H. R., Hatzfeld, D., Tatar, M., et al. (2008). Distribution of the right-lateral strike–slip motion from the main recent fault to the kazerun fault system (Zagros, Iran): evidence from present-day GPS velocities. Earth and Planetary Science Letters, 275, 342–347.CrossRefGoogle Scholar
  66. Tchalenco, J. S., & Braud, J. (1974). Seismicity and structure of the Zagros: the main recent fault Between 33 and 35 ° N. Philosophical Transactions of the Royal Society of London, Series A, 277, 1–25.CrossRefGoogle Scholar
  67. Wennberg, O. P., Azizzadeh, M., Aqrawi, A. A. M., Blanc, E., Brockbank, P., Lyslo, K. B., et al. (2007). The Khaviz Anticline: An outcrop analogue to giant fractured Asmari Formation reservoirs in SW Iran. In L. Lonergan, R. J. H. Jolly, K. Rawnsley, & D. J. Sanderson (Eds.), Fractured reservoirs (Vol. 270, pp. 23–42). London: Geological Society London. (special publications).Google Scholar
  68. Wu, S., & Groshong, R. H., Jr. (1991). Low temperature deformation of sandstone, southern appalachian fold-thrust belt. Geological Society American Bulletin, 103, 861–875.CrossRefGoogle Scholar
  69. Zamani, A., & Hashemi, N. (2004). Computer-based self-organized tectonic zoning: a tentative pattern recognition for Iran. Computers & Geosciences, 30, 705–718.CrossRefGoogle Scholar
  70. Zazoun, R. S. (2008). The fadnoun area, tassili-n-azdjer, Algeria: fracture network geometry analysis. Journal of African Earth Sciences, 50, 273–285.CrossRefGoogle Scholar
  71. Zhao, J., Chen, S., Zuo, R., & Carranza, E. J. M. (2011). Mapping complexity of spatial distribution of faults using fractal and multifractal models: vectoring towards exploration targets. Computers & Geosciences, 37, 1958–1966.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Earth SciencesDamghan UniversityDamghanIran

Personalised recommendations