Study of the Western Black Sea Storms with a Focus on the Storms Caused by Cyclones of North African Origin

Article
  • 14 Downloads

Abstract

We present a study of the Black Sea storms, using a long hindcast of the western Black Sea wind waves. The goal of the work is to study the trends in the storminess indicators. We identify 238 storms with significant wave height above 4 m for the period 1900–2015. We study the cyclogenetic regions of the cyclones causing these storms and focus specifically on the Black Sea storms associated with cyclones originating over the Gulf of Sidra and the adjacent areas. We also identify which of these storms are associated with the so-called explosive cyclogenesis (with deepening rate above 1 Bergeron) and find that 3 out of 5 cases of severe Black Sea storms associated with explosive cyclones are caused by cyclones originating in the Gulf of Sidra. We find no evidence of steady trends in the western Black Sea storminess.

Keywords

Black Sea wind waves sea storms Mediterranean cyclones wave hindcast wave climate 

Notes

Acknowledgements

Since the study was based on free of charge data and open source software, the authors would like to express their deep gratitude to all institutions (ECMWF, NOAA, NCEP-NCAR, Unidata, MPI-M and all others) and individual enthusiasts. This study would not have been possible without their innovative data services and tools. We are grateful to Dr. Anna Kortcheva for the useful discussions. We are also grateful to Ivan Tsonevsky from ECMWF for the valuable comments. We are also grateful to the two anonymous reviewers which helped us to improve the paper significantly. We also thank Dr. Christina Andreeva for proof-reading the manuscript.

References

  1. Akpinar, A., & Bingölbali, B. (2016). Long-term variations of the wind and wave conditions in the coastal regions of the Black Sea. Natural Hazards, 84(1), 69–92.CrossRefGoogle Scholar
  2. Akpinar, A., Bingölbali, B., & Van Vledder, G. P. (2016). Wind and wave characteristics in the Black Sea based on the SWAN wave model forced with the CFSR winds. Ocean Engineering, 126, 276–298.CrossRefGoogle Scholar
  3. Akpinar, A., & Ponce de Leon, S. (2015). An assessment of the wind re-analyses in the modeling of extreme sea state in the Black Sea. Dynamics of Atmospheres and Oceans, 73, 61–75.CrossRefGoogle Scholar
  4. Alpert, P., Neeman, B. U., & Shay-El, Y. (1990). Climatological analysis of Mediterranean cyclones using ECMWF data. TellusA, 42, 65–77.CrossRefGoogle Scholar
  5. Arkhipkin, V. S., Gippius, F. N., Koltermann, K. P., & Surkova, G. V. (2014). Wind waves in the Black Sea: results of a hindcast study. Natural Hazards and Earth System Sciences, 14, 2883–2897.CrossRefGoogle Scholar
  6. Belberov, Z., Trifonova, E., Valchev, N., Andreeva, N., & Eftimova, P. (2009). Contemporary reconstruction of the historical storm of February 1979 and assessment of its impact on the coastal zone infrastructure. 9th International multidisciplinary scientific geoconference SGEM2009, 2, pp. 243–250.Google Scholar
  7. Bengtsson, L., Hodges, K. I., & Hagemann, S. (2004). Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations. Tellus A, 56(5), 456–471.CrossRefGoogle Scholar
  8. Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third generation wave model for coastal regions: 1. Model description and validation. Journal of geophysical research: Oceans, 104, 7649–7666.CrossRefGoogle Scholar
  9. Campins, J., Genovés, A., Picornell, M. A., & Jansà, A. (2011). Climatology of Mediterranean cyclones using the ERA-40 dataset. International Journal of Climatology, 31, 1596–1614.  https://doi.org/10.1002/joc.2183.Google Scholar
  10. Campins, J., Jansà, A., & Genovés, A. (2006). Three-dimensional structure of Western Mediterranean cyclones. International Journal of Climatology, 26, 323–343.CrossRefGoogle Scholar
  11. Chervenkov H. (2012) The Winter of 2011/2012—Synoptical aspects and weather events. Proceedings of IX-th scientific-technical conference with international participation “ECOLOGY and HEALTH” 2012, Plovdiv, 17 May 2012, ISSN 1314-1880, pp. 511–516.Google Scholar
  12. Chervenkov, H. (2014). Objective assessment of three storm cases over the Mediterranean based on NCEP-NCAR reanalysis data. Bulgarian geophysical Journal, 39, 82–92. (ISSN: 1311-753X (BGJ)).Google Scholar
  13. Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., et al. (2011). The twentieth century reanalysis project. Quarterly Journal of Royal Meteorological Society, 137, 1–28.CrossRefGoogle Scholar
  14. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553–597.CrossRefGoogle Scholar
  15. Divinsky, B. V., & Kosyan, R. D. (2015). Observed wave climate trends in the offshore Black Sea from 1990 to 2014. Oceanology, 55, 837–843.CrossRefGoogle Scholar
  16. Divinsky, B. V., & Kosyan, R. D. (2017). Spatiotemporal variability of the Black Sea wave climate in the last 37 years. Continental Shelf Research, 136, 1–19.CrossRefGoogle Scholar
  17. Fomin, V. V. (2017). Numerical Modeling of wind waves in the Black Sea generated by atmospheric cyclones. Journal of Physics Conference Series, 899, 052005.CrossRefGoogle Scholar
  18. Galabov, V., & Chervenkov, H. (2018). On the winter wave climate of the Western Black Sea: The changes during the last 115 years. Lecture Notes in Computer Science, 10665, 466–473.  https://doi.org/10.1007/978-3-319-73441-5_51.CrossRefGoogle Scholar
  19. Galabov, V., Kortcheva, A., Bogatchev, A., & Tsenova, B. (2015). Investigation of the hydro-meteorological hazards along the Bulgarian coast of the Black sea by reconstructions of historical storms. Journal of Environmental Protection and Ecology, 16(3), 1005–1015.Google Scholar
  20. Genovés, A., Campins, J., & Jansà, A. (2006). Intense storms in the Mediterranean: a first description from the ERA-40 perspective Adv. Geosciences, 7, 163–168.Google Scholar
  21. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.CrossRefGoogle Scholar
  22. Kendall, M. G., & Stuart, A. (1976). The Advanced theory of statistics: Distribution theory (Vol. I). London: Griffin.Google Scholar
  23. Kislov, A. V., Surkova, G. V., & Arkhipkin, V. S. (2016). Occurrence frequency of storm wind waves in the Baltic, Black and Caspian Seas under changing climate conditions. Russian Meteorology and Hydrology, 41(2), 121–129.CrossRefGoogle Scholar
  24. Komen, G. J., Hasselmann, S., & Hasselmann, K. (1984). On the existence of a fully developed wind sea spectrum. Journal of Physical Oceanography, 14, 1271–1285.CrossRefGoogle Scholar
  25. Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., & Hatzaki, M. (2011). Climatological aspects of explosive cyclones in the Mediterranean. International Journal of Climatology, 31, 1785–1802.  https://doi.org/10.1002/joc.2203.CrossRefGoogle Scholar
  26. Kouroutzoglou, J., Flocas, H. A., Hatzaki, M. Keay, K., Simmonds, I. & Mavroudis, A. (2013) Identification of the development mechanisms of an explosive cyclone in the central Mediterranean with the aid of the MSG satellite images. Proc. SPIE 8795, first international conference on remote sensing and geoinformation of the environment (RSCy2013), 87951S, 5 August 2013.Google Scholar
  27. Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P. M., Krichak, S., Jansà, A., et al. (2006). Cyclones in the Mediterranean region: climatology and effects on the environment developments in earth and environmental sciences. Elsevier, 4, 325–372.Google Scholar
  28. Lionello, P., Trigo, I. F., Gil, V., Liberato, M. L. R., Nissen, K. M., Pinto, J. G., et al. (2016). Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A Dynamic Meteorology and Oceanography, 68(1), 29391.  https://doi.org/10.3402/tellusa.v68.29391.CrossRefGoogle Scholar
  29. Lopatoukhin, L., Boukhanovsky, A. & Chernysheva, E. (2009) Statistics of Black Sea Extreme Storms. Proceedings of the ninth international conference on the mediterranean coastal environment, MEDCOAST 09, E. Ozhan (editor), 10–14 November 2009, Sochi, Russia.Google Scholar
  30. Maheras, P., Tolika, K., & Chiotoroiu, B. (2009). Atmospheric circulation types associated with storms on the Romanian Black Sea Coast Application of a new automated scheme. Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series), 19(1), 193–198.Google Scholar
  31. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.CrossRefGoogle Scholar
  32. Mihailov, M.E., Diaconu, V., Buga, L., Stefan, S., Tomescu-Chivu, M.I., Ganea, G., Malciu, V., & Matei, S. (2013) Wave characteristics in the Romanian nearshore waters. In proceedings: International Multidisciplinary Scientific GeoConference: SGEM2013, p. 879.Google Scholar
  33. Onea, F., & Rusu, L. (2017). A long-term assessment of the Black Sea wave climate. Sustainability, 9, 1875.CrossRefGoogle Scholar
  34. Polonskii, A. B., Bardin, M Yu., & Voskresenskaya, E. N. (2007). Statistical characteristics of cyclones and anticyclones over the Black Sea. Physical Oceanography, 17(6), 348–359.CrossRefGoogle Scholar
  35. Polonskii, A. B., & Semiletova, E. P. (2002). On the statistical characteristics of the North-Atlantic Oscillation. Physical Oceanography, 12(3), 142–155.CrossRefGoogle Scholar
  36. Polonsky, A., Evstigneev, V., Naumova, V., & Voskresenskaya, E. (2014). Low-frequency variability of storms in the northern Black Sea and associated processes in the ocean–atmosphere system. Regional environmental change, 14(5), 1861–1871.CrossRefGoogle Scholar
  37. Pozo-Vazquez, D., Esteban-Para, M. J., Rodrigo, F. S., & Castro-Diez, Y. (2000). An analysis of the variability of the North Atlantic Oscillation in the time and the frequency domains. International Journal of Climatology, 20, 1675–1692.CrossRefGoogle Scholar
  38. Rusu, L. (2018). Evaluation of the accuracy of the spectral models in predicting the storm events in the Black Sea. In G. Soares & Texeira (Eds.), Marine transportation and harvesting of sea resources (pp. 1005–1010). London: Taylor & Francis Group. (ISBN 978-0-8153-7993-5).Google Scholar
  39. Rusu, L., Butunoiu, D., & Rusu, E. (2014). Analysis of the extreme storm events in the Black Sea considering the results of a ten-year wave hindcast. Journal of Environmental Protection and Ecology., 15(2), 445–454.Google Scholar
  40. Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., & Coauthors, (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057.CrossRefGoogle Scholar
  41. Stickler, A., Brönnimann, S., Valente, M. A., Bethke, J., Sterin, A., Jourdain, S., et al. (2014). ERA-CLIM: historical surface and upper-air data for future reanalyses. Bulletin of the American Meteorological Society, 95, 1419–1430.CrossRefGoogle Scholar
  42. Surkova, G., Arkhipkin, V., & Kislov, A. (2013). Atmospheric circulation and storm events in the Black Sea and Caspian Sea. Open Geosciences, 5(4), 548–559.CrossRefGoogle Scholar
  43. Trigo, I. F. (2006). Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics, 26, 127–143.CrossRefGoogle Scholar
  44. Trigo, I. F., Bigg, G. R., & Davis, T. D. (2002). Climatology of cyclogenesis mechanisms in the Mediterranean. Monthly Weather Review, 130, 549–569.CrossRefGoogle Scholar
  45. Trigo, I., Davies, T., & Bigg, G. (1999). Objective climatology of cyclones in the Mediterranean region. Journal of Climate, 12(6), 1685–1696.CrossRefGoogle Scholar
  46. Ulbrich, U., Leckebusch, G. C., & Pinto, J. G. (2009). Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol, 96, 117–131.CrossRefGoogle Scholar
  47. Valchev, N., Davidan, I., Belberov, Z., Palazov, A., & Valcheva, N. (2010). Hindcasting and assessment of the western Black Sea wind and wave climate. Journal of Environmental Protection and Ecology, 11(3), 1001–1012.Google Scholar
  48. Valchev, N. N., Trifonova, E. V., & Andreeva, N. K. (2012). Past and recent trends in the western Black Sea storminess. Natural Hazards and Earth System Sciences, 12(4), 961–977.CrossRefGoogle Scholar
  49. Zainescu, F. I., Tatui, F., Valchev, N., & Vespremeanu-Stroe, A. (2017). Storm climate on the Danube delta coast: evidence of recent storminess change and links with large-scale teleconnection patterns. Natural Hazards, 87(2), 599–621.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences (NIMH-BAS)SofiaBulgaria

Personalised recommendations