Advertisement

Towards Holography in the BV-BFV Setting

  • Pavel Mnev
  • Michele SchiavinaEmail author
  • Konstantin Wernli
Original Paper

Abstract

We show how the BV-BFV formalism provides natural solutions to descent equations and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by means of an AKSZ-type construction we reproduce the Chern–Simons to Wess–Zumino–Witten correspondence from infinitesimal local data and show an analogous correspondence for BF theory. We discuss how holographic correspondences relate to choices of polarisation relevant for quantisation, proposing a semi-classical interpretation of the quantum holographic principle.

Notes

References

  1. 1.
    Alekseev, A., Barmaz, Y., Mnev, P.: Chern–Simons theory with Wilson lines and boundary in the BV-BFV formalism. J. Geom. Phys. 67, 1–15 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alexandrov, M., Kontsevich, M., Schwarz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405–1430 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alekseev, A., Naef, F., Xu, X., Zhu, C.: Chern–Simons, Wess–Zumino and other cocycles from Kashiwara Vergne associators. Lett. Math. Phys. 108(3), 757–778 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Anderson, I. M.: The variational Bicomplex, Unfinished Book. http://deferentialgeometry.org/papers/The%20Variational%20Bicomplex.pdf. Accessed 25 Oct 2019
  5. 5.
    Axelrod, S., Pietra, S.Della, Witten, E.: Geometric quantization of Chern–Simons theory. J. Differ. Geom. 33, 787–902 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories. Phys. Rep. 338, 439 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Batalin, I.A., Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion costraints. Phys. Lett. B 69(3), 309–312 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Batalin, I.A., Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122(2), 157–164 (1983)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Becchi, C., Rouet, A., Stora, R.: The abelian Higgs Kibble model, unitarity of the S-operator. Phys. Lett. B 52, 344 (1974)ADSCrossRefGoogle Scholar
  11. 11.
    Becchi, C., Rouet, A., Stora, R.: Renormalization of the abelian Higgs–Kibble model. Commun. Math. Phys. 42, 127 (1975)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Becchi, C., Rouet, A., Stora, R.: Renormalization of gauge theories. Ann. Phys. 98(2), 287–321 (1976)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bieri, S., Fröhlich, J.: Physical principles underlying the quantum Hall effect. C. R. Phys. 12, 332–346 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. Commun. Math. Phys. 345(3), 741–779 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Canepa, G., Schiavina, M.: Fully extended BV-BFV description of general relativity in three dimensions. arXiv:1905.09333
  16. 16.
    Carlip, S.: Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole. Class. Quantum Gravity 22, 85–124 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Cattaneo, A.S., Cotta-Ramusino, P., Fröhlich, J., Martellini, M.: Topological BF theories in 3 and 4 dimensions. J. Math. Phys. 36, 6137 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Cattaneo, A. S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Cattaneo, A.S., Mnev, P., Wernli, K.: Split Chern-Simons theory in the BV-BFV formalism. In: Cardona, A., Morales, P., Ocampo, H., Paycha, S., Reyes Lega, A.F. (eds.) Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, pp. 293–324. Springer, Cham (2017) zbMATHCrossRefGoogle Scholar
  20. 20.
    Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Perturbative quantum gauge theories on manifolds with boundary. Commun. Math. Phys 357(2), 631–730 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Poisson sigma model and semiclassical quantization of integrable systems. In: Mo-Lin, G., Niemi, A.J., Phua KK., Takhtajan, L.A. (eds.) Ludwig Faddeev Memorial Volume, pp. 93–118. World Scientific, Singapore (2018) CrossRefGoogle Scholar
  23. 23.
    Cattaneo, A.S., Rossi, C.: Higher-dimensional BF theories in the Batalin–Vilkovisky formalism: the BV action and generalized Wilson loops. Commun. Math. Phys. 221, 591–657 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Cattaneo, A.S., Schiavina, M.: BV-BFV approach to general relativity: Einstein–Hilbert action. J. Math. Phys. 57, 023515 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Cattaneo, A.S., Schiavina, M.: On time. Lett. Math. Phys. 107(2), 375–408 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Cattaneo, A. S., Schiavina, M.: BV-BFV approach to general relativity: Palatini–Cartan–Holst action. In: Advances in Theoretical and Mathematical Physics (to appear). arXiv:1707.05351
  27. 27.
    Cattaneo, A.S., Schiavina, M., Selliah, I.: BV-equivalence between triadic gravity and BF theory in three dimensions. Lett. Math. Phys. 108(8), 1873–1884 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Cho, G.Y., Moore, J.: Topological BF field theory description of topological insulators. Ann. Phys. 326, 1515–1535 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Contreras, I., Schiavina, M., Wernli, K.: Integration of algebroids via the AKSZ construction (in preparation)Google Scholar
  30. 30.
    Costello, K.: Renormalization and Effective Field Theory, Mathematical Surveys and Monographs, vol. 170. Americal Mathematical Society, Providence (2011)zbMATHGoogle Scholar
  31. 31.
    Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory, Volume 1, New Mathematical Monographs, vol. 31. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  32. 32.
    Coussaert, O., Henneaux, M., van Driel, P.: The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant. Class. Quantum Gravity 12, 2961–2966 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Delgado, N.L.: Lagrangian field theories: ind/pro-approach and \(L_\infty \)-algebra of local observables, PhD thesis (2017)Google Scholar
  34. 34.
    Deligne, P., Freed, D.S.: Classical field theory. In: Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Deligne, P., Etingof, P., Witten, E. (eds.) Quantum Fields and Strings: A Course for Mathematicians, vol. 1, pp. 137–226. American Mathematical Society, Providence (1999)Google Scholar
  35. 35.
    Donnelly, W., Freidel, L.: Local subsystems in gauge theory and gravity. J. High Energy Phys. 09, 102 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Elitzur, S., Moore, G., Schwimmer, A., Seiberg, N.: Remarks on the canonical quantization of the Chern–Simons–Witten theory. Nucl. Phys. B 326(1), 108–134 (1989)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Fröhlich, J.: Chiral anomaly, topological field theory, and novel states of matter. In: Molin, G., Antti, N., Kok Khoo, P., Takhtajan, L.A. (eds.) Ludwig Faddeev Memorial Volume: A Life in Mathematical Physics. World Scientific, Singapore (2018)Google Scholar
  38. 38.
    Gawedzki, K., Kupiainen, A.: SU(2) Chern–Simons theory at genus zero. Commun. Math. Phys. 135, 531–546 (1991)Google Scholar
  39. 39.
    Geiller, M.: Edge modes and corner ambiguities in3d Chern–Simons theory and gravity. Nucl. Phys. B 924, 312–365 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Ikeda, N.: Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Iraso, R., Mnev, P.: Two-Dimensional Yang-Mills Theory on Surfaces with Corners in Batalin-Vilkovisky Formalism—Iraso, Riccardo and Mnev, Pavel. Commun. Math. Phys. 370(2), 637–702 (2019) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Mañes, J., Stora, R., Zumino, B.: Algebraic study of chiral anomalies. Commun. Math. Phys. 102, 157–174 (1985)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Mathieu, P., Schenkel, A., Teh, N. J., Wells, L.: Homological perspective on edge modes in linear Yang–Mills theory (2019). arXiv:1907.10651
  44. 44.
    Mnev, P.: Discrete BF Theory. arXiv:0809.1160
  45. 45.
    Rejzner, K.: Perturbative Algebraic Quantum Field Theory, Mathematical Physics Studies. Springer, Berlin (2016)zbMATHCrossRefGoogle Scholar
  46. 46.
    Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9(33), 3129–3136 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Tyutin, I.V.: Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism, vol. 39. Lebedev Physics Institute preprint (1975). arXiv:0812.0580
  48. 48.
    Wess, J., Zumino, B.: Consequences of anomalous Ward identities. Phys. Lett. 37B, 95 (1971)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Witten, E.: Global aspects of current algebra. Nucl. Phys. B 223, 422 (1983)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Witten, E.: Non-Abelian bosonization in two dimensions. Commun. Math. Phys. 92, 455 (1984)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Witten, E.: Topological sigma models. Commun. Math. Phys 118(3), 411–449 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Zumino, B.: Cohomology of gauge groups: cocycles and Schwinger terms. Nucl. Phys. B 253, 477–493 (1985)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsNotre Dame UniversityNotre DameUSA
  2. 2.St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute for Theoretical PhysicsETH ZürichZurichSwitzerland
  4. 4.Department of MathematicsETH ZürichZurichSwitzerland

Personalised recommendations