Multi-colored Links From 3-Strand Braids Carrying Arbitrary Symmetric Representations

  • Saswati Dhara
  • Andrei Mironov
  • Alexei Morozov
  • Andrey Morozov
  • Pichai Ramadevi
  • Vivek Kumar Singh
  • Alexey SleptsovEmail author


Obtaining HOMFLY-PT polynomials \(H_{R_1,\ldots ,R_l}\) for arbitrary links with l components colored by arbitrary SU(N) representations \(R_1,\ldots ,R_l\) is a very complicated problem. For a class of rank r symmetric representations, the [r]-colored HOMFLY-PT polynomial \(H_{[r_1],\ldots ,[r_l]}\) evaluation becomes simpler, but the general answer lies far beyond our current capabilities. To simplify the situation even more, one can consider links that can be realized as a 3-strand closed braid. Recently (Itoyama et al. in Int J Mod Phys A28:1340009, 2013. arXiv:1209.6304), it was shown that \(H_{[r]}\) for knots realized by 3-strand braids can be constructed using the quantum Racah coefficients (6j-symbols) of \(U_q(sl_2)\), which makes easy not only to evaluate such invariants, but also to construct analytical formulas for \(H_{[r]}\) of various families of 3-strand knots. In this paper, we generalize this approach to links whose components carry arbitrary symmetric representations. We illustrate the technique by evaluating multi-colored link polynomials \(H_{[r_1],[r_2]}\) for the two-component link L7a3 whose components carry \([r_1]\) and \([r_2]\) colors. Using our results for exclusive Racah matrices, it is possible to calculate symmetric-colored HOMFLY-PT polynomials of links for the so-called one-looped links, which are obtained from arborescent links by adding a loop. This is a huge class of links that contains the entire Rolfsen table, all 3-strand links, all arborescent links, and, for example, all mutant knots with 11 intersections.



Our work was partly supported by the Grant of the Foundation for the Advancement of Theoretical Physics “BASIS” (A.M’s and A.S.), by Grant 16-31-60082-mol-a-dk (A.S.) and 18-31-20046-mol-a-ved (A.S.), by RFBR Grants 16-01-00291 (A.Mir.), 16-02-01021 (A.Mor.) and 17-01-00585 (An.Mor.), by joint Grants 17-51-50051-YaF, 18-51-05015-Arm-a (A.M’s, A.S.), 18-51-45010-Ind-a (A.M’s, A.S.), 19-51-53014-Gfen-a (A.M’s, A.S.), 19-51-50008-Yaf-a (And.Mir., And.Mor.) and by President of Russian Federation Grant MK-2038.2019.1 (And.Mor.). PR, VKS and SD acknowledge DST-RFBR Grant (INT/RUS/RFBR/P-309) for support. SD would like to thank CSIR for research fellowship. VKS would like to acknowledge the ERC Starting Grant no. 335739 “Quantum fields and knot homologies” for support. A. Mir., A. Mor., An. Mor. and PR would like to thank Kavli Institute for Theoretical Physics at the University of California, Santa Barbara, for local hospitality where we discussed some parts of this work.


  1. 1.
    Itoyama, H., Mironov, A., Morozov, A., Morozov, An: Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations. Int. J. Mod. Phys. A 28, 1340009 (2013). arXiv:1209.6304 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory, 3rd edn. Pergamon Press, Oxford (1977) zbMATHGoogle Scholar
  3. 3.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kaul, R.K., Govindarajan, T.R.: Three-dimensional Chern–Simons theory as a theory of knots and links. Nucl. Phys. B 380, 293–336 (1992). arXiv:hep-th/9111063 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ramadevi, P., Govindarajan, T.R., Kaul, R.K.: Knot invariants from rational conformal field theories. Nucl. Phys. B 402, 548–566 (1993). arXiv:hep-th/9212110 ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Ramadevi, P., Govindarajan, T.R., Kaul, R.K.: Knot invariants from rational conformal field theories. Nucl. Phys. B 422, 291–306 (1994). arXiv:hep-th/9312215 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ramadevi, P., Sarkar, T.: On link invariants and topological string amplitudes. Nucl. Phys. B 600, 487–511 (2001). arXiv:hep-th/0009188 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zodinmawia, Ramadevi, P.: SU(N) quantum Racah coefficients and non-torus links. Nucl. Phys. B 870, 205–242 (2013). arXiv:1107.3918 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kirillov, A., Reshetikhin, N.: Representations of the Algebra \(U_q(sl_2)\), q-Orthogonal Polynomials and Invariants of Links. New Developments in the Theory of Knots, pp. 202–256. World Scientific, Singapore (1990)Google Scholar
  10. 10.
    Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Springer, Berlin (2012)zbMATHGoogle Scholar
  11. 11.
    Groenevelt, W.: Wilson function transforms related to Racah coefficients. Acta Appl. Math. 91, 133–191 (2006). arXiv:math/0501511 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ponsot, B., Teschner, J.: Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of \(U_q(sl(2,{\mathbb{R}}))\). Commun. Math. Phys. 224, 613–655 (2001). arXiv:math/0007097 ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Mironov, A., Morozov, A., Morozov, An: Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid. JHEP 1203, 034 (2012). arXiv:1112.2654 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mironov, A., Morozov, A., Morozov, An, Sleptsov, A.: Racah matrices and hidden integrability in evolution of knots. Phys. Lett. B 760, 45–58 (2016). arXiv:1605.04881 ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Nawata, S., Ramadevi, P.: Zodinmawia: multiplicity-free quantum 6j-symbols for \(U_q(sl_N)\). Lett. Math. Phys. 103, 1389–1398 (2013). arXiv:1302.5143 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mironov, A., Morozov, A., Sleptsov, A.: Colored HOMFLY polynomials for the pretzel knots and links. JHEP 07, 069 (2015). arXiv:1412.8432 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Itoyama, H., Mironov, A., Morozov, A., Morozov, An: Character expansion for HOMFLY polynomials. III. All 3-strand braids in the first symmetric representation. Int. J. Mod. Phys. A 27, 1250099 (2012). arXiv:1204.4785 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Anokhina, A., Mironov, A., Morozov, A., Morozov, An: Racah coefficients and extended HOMFLY polynomials for all 5-, 6- and 7-strand braids. Nucl. Phys. B 868, 271–313 (2013). arXiv:1207.0279 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mironov, A., Morozov, A.: Universal Racah matrices and adjoint knot polynomials. I. Arborescent knots. Phys. Lett. B 755, 47–57 (2016). arXiv:1511.09077 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Anokhina, A., Morozov, An: Cabling procedure for the colored HOMFLY polynomials. Theor. Math. Phys. 178, 1–58 (2014). arXiv:1307.2216 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Garoufalidis, S.: On the characteristic and deformation varieties of a knot. Proceedings of the Casson Fest, Geom. Topol. Monogr., Vol. 7, Geom. Topol. Publ., Coventry, 2004, 291–309 (electronic)Google Scholar
  22. 22.
    Le, T.T., Tran, A.T.: On the AJ conjecture for knots. Indiana Univ. Math. J 64, 1103–1151 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419–438 (2000). arXiv:hep-th/9912123 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Labastida, J.M.F., Mariño, M.: A new point of view in the theory of knot and link invariants. J. Knot Theory Ramif. 11, 173 (2002). arXiv:math/0104180 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Labastida, J.M.F., Mariño, M., Vafa, C.: Knots, links and branes at large N. JHEP 0011, 007 (2000). arXiv:hep-th/0010102 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Garoufalidis, S., Kucharski, P., Sułkowski, P.: Knots, BPS states, and algebraic curves. Commun. Math. Phys. 346, 75–113 (2016). arXiv:1504.06327 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kucharski, P., Reineke, M., Stosic, M., Sułkowski, P.: Knots-quivers correspondence. arXiv:1707.04017
  28. 28.
    Kucharski, P., Reineke, M., Stosic, M., Sułkowski, P.: BPS states, knots and quivers. Phys. Rev. D 96, 121902 (2017). arXiv:1707.02991 ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Mironov, A., Morozov, A.: On Hopf-induced deformation of topological locus. JETP Lett. 107(11), 728–735 (2018). arXiv:1804.10231 ADSCrossRefGoogle Scholar
  30. 30.
    Awata, H., Kanno, H., Mironov, A., Morozov, A., Morozov, An: A non-torus link from topological vertex. Phys. Rev. D 98, 046018 (2018). arXiv:1806.01146 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Mironov, A., Morozov, A., Morozov, An, Ramadevi, P., Singh, Vivek Kumar, Sleptsov, A.: Checks of integrality properties in topological strings. JHEP 08, 139 (2017). arXiv:1702.06316 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mironov, A., Morozov, A., Morozov, An, Sleptsov, A.: Gaussian distribution of LMOV numbers. Nucl. Phys. B 924, 1–32 (2017). arXiv:1706.00761 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Mironov, A., Morozov, A.: Towards effective topological field theory for knots. Nucl. Phys. B 899, 395–413 (2015). arXiv:1506.00339 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Mironov, A., Morozov, A., Morozov, An, Ramadevi, P., Singh, Vivek Kumar, Sleptsov, A.: Tabulating knot polynomials for arborescent knots. J. Phys. A Math. Theor. 50(8), 085201 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Caudron, A.: Classification des noeuds et des enlacements, Publ. Math. Orsay 82-4, University of Paris XI, Orsay, (1982)Google Scholar
  36. 36.
    Bonahon, F., Siebenmann, L.C.: New geometric splittings of classical knots and the classification and symmetries of arborescent knots. (2010)
  37. 37.
    Morozov, An, Sleptsov, A.: New symmetries for the Uq(slN) 6-j symbols from the eigenvalue conjecture. JETP Lett. 108(10), 697–704 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    Rosso, M., Jones, V.F.R.: On the invariants of torus knots derived from quantum groups. J. Knot Theory Ramif. 2, 97–112 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Lin, X.-S., Zheng, H.: On the Hecke algebras and the colored HOMFLY polynomial. Trans. Am. Math. Soc. 362, 1–18 (2010). arXiv:math/0601267 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Liu, K., Peng, P.: Proof of the Labastida–Marino–Ooguri–Vafa conjecture. J. Differ. Geom. 85(3), 479–525 (2010). arXiv:0704.1526 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Guadagnini, E., Martellini, M., Mintchev, M.: Chern–Simons holonomies and the appearance of quantum groups. Phys. Lett. B 235, 275 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Reshetikhin, NYu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1–26 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Mironov, A., Morozov, A., Morozov, An: Character expansion for HOMFLY polynomials. I. Integrability and difference equations. In: Rebhan, A., Katzarkov, L., Knapp, J., Rashkov, R., Scheidegger, E. (eds.) Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer, pp. 101–118. World Scietific, Singapore (2013). arXiv:1112.5754 Google Scholar
  44. 44.
    Anokhina, A., Mironov, A., Morozov, A., Morozov, An: Colored HOMFLY polynomials as multiple sums over paths or standard Young tableaux. Adv. High Energy Phys. 2013, 931830 (2013). arXiv:1304.1486 MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Gould, M., Zhang, Y.: Quantum affine Lie algebras, Casimir invariants, and diagonalization of the braid generator. J. Math. Phys. 35(12), 6757–6773 (1994). arXiv:hep-th/9311041 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Gu, J., Jockers, H.: A note on colored HOMFLY polynomials for hyperbolic knots from WZW models. Commun. Math. Phys. 338(1), 393–456 (2015). arXiv:1407.5643 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Mironov, A., Morozov, A., Morozov, An, Sleptsov, A.: Colored knot polynomials. HOMFLY in representation [2,1]. Int. J. Mod. Phys. A30, 1550169 (2015). arXiv:1508.02870 ADSCrossRefzbMATHGoogle Scholar
  48. 48.
    Mironov, A., Morozov, A., Morozov, An, Sleptsov, A.: HOMFLY polynomials in representation [3,1] for 3-strand braids. JHEP 2016, 134 (2016). arXiv:1605.02313 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Mironov, A., Morozov, A., Morozov, An, Sleptsov, A.: Quantum Racah matrices and 3-strand braids in irreps R with \(|R|=4\). JETP Lett. 104, 56–61 (2016). arXiv:1605.03098 ADSCrossRefGoogle Scholar
  50. 50.
    Shakirov, Sh., Sleptsov, A.: Quantum Racah matrices and 3-strand braids in representation [3,3]. arXiv:1611.03797
  51. 51.
    Bai, C., Jiang, J., Liang, J., Mironov, A., Morozov, A., Morozov, An, Sleptsov, A.: Quantum Racah matrices up to level 3 and multicolored link invariants. J. Geom. Phys. 132, 155–180 (2018). arXiv:1801.09363 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Mironov, A., Morozov, A.: Eigenvalue conjecture and colored Alexander polynomials. Eur. Phys. J. C 78, 284 (2018). arXiv:1610.03043 CrossRefGoogle Scholar
  53. 53.
    Tuba, I., Wenzl, H.: Representations of the braid group B3 and of SL (2, Z). Pac. J. Math. 197(2), 491–510 (2001). arxiv:math/9912013 CrossRefzbMATHGoogle Scholar
  54. 54.
    Zhu, Shengmao: Colored HOMFLY polynomial via skein theory. J. High Energy Phys. 10, 1–24 (2013). arXiv:1206.5886 Google Scholar
  55. 55.
    Itoyama, H., Mironov, A., Morozov, A., Morozov, An: HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations. JHEP 2012, 131 (2012). arXiv:1203.5978 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Mironov, A., Mironov, S., Mishnyakov, V., Morozov, A., Sleptsov, A.: Colored Alexander polynomials and KP hierarchy. Phys. Lett. B 783, 268–273 (2018). arXiv:1805.02761 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
  58. 58.
    Furmaniak, R., Rankin, S.: Knotilus, a knot visualization interface.
  59. 59.
    Mironov, A., Morozov, A., Morozov, An: Tangle blocks in the theory of link invariants. JHEP 2018, 128 (2018). arXiv:1804.07278 MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Dhara, Saswati, Mironov, A., Morozov, A., Morozov, An, Ramadevi, P., Singh, Vivek Kumar, Sleptsov, A.: Eigenvalue hypothesis for multi-strand braids. Phys. Rev. D 97, 126015 (2018). arXiv:1711.10952 ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Mironov, A., Morozov, A., Sleptsov, A.: On 6j-symbols for symmetric representations of \(U_q(su_N)\). JETP Lett. 106(10), 630–636 (2017). arXiv:1709.02290 ADSCrossRefGoogle Scholar
  62. 62.
    Chan, Chuan-Tsung, Mironov, A., Morozov, A., Sleptsov, A.: Orthogonal polynomials in mathematical physics. Rev. Math. Phys 30, 1840005 (2018). arXiv:1712.03155 MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Bishler, L., Morozov, An, Sleptsov, A., Shakirov, Sh: On the block structure of the quantum R-matrix in the three-strand braids. Int. J. Mod. Phys. A 33(17), 1850105 (2018). arXiv:1712.07034 ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia
  2. 2.Lebedev Physics InstituteMoscowRussia
  3. 3.ITEPMoscowRussia
  4. 4.Institute for Information Transmission ProblemsMoscowRussia
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  6. 6.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations