Advertisement

Annales Henri Poincaré

, Volume 20, Issue 11, pp 3543–3562 | Cite as

Schatten Class Conditions for Functions of Schrödinger Operators

  • Rupert L. FrankEmail author
  • Alexander Pushnitski
Article
  • 73 Downloads

Abstract

We consider the difference \(f(H_1)-f(H_0)\), where \(H_0=-\Delta \) and \(H_1=-\Delta +V\) are the free and the perturbed Schrödinger operators in \(L^2({{\mathbb {R}}}^d)\), respectively, in which V is a real-valued short range potential. We give a sufficient condition for this difference to belong to a given Schatten class \({\mathbf {S}}_p\), depending on the rate of decay of the potential and on the smoothness of f (stated in terms of the membership in a Besov class). In particular, for \(p>1\) we allow for some unbounded functions f.

Notes

Acknowledgements

Partial support by U.S. National Science Foundation DMS-1363432 (R.L.F.) is acknowledged. A.P. is grateful to Caltech for hospitality.

References

  1. 1.
    Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)CrossRefGoogle Scholar
  2. 2.
    Birman, M.Sh., Solomyak, M.Z.: Estimates for the singular numbers of integral operators. (Russian) Uspekhi Mat. Nauk 32(1), 17–84 (1977). English transl. in Russ. Math. Surv. 32(1), 15–89 (1977)Google Scholar
  3. 3.
    Frank, R.L., Lewin, M., Lieb, E.H., Seiringer, R.: Energy cost to make a hole in the Fermi sea. Phys. Rev. Lett. 106, 150402 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Frank, R.L., Lewin, M., Lieb, E.H., Seiringer, R.: A positive density analogue of the Lieb–Thirring inequality. Duke Math. J. 162(3), 435–495 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Frank, R., Pushnitski, A.: Trace class conditions for functions of Schrödinger operators. Commun. Math. Phys. 335, 477–496 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Frank, R., Pushnitski, A.: The spectral density of a product of spectral projections. J. Funct. Anal. 268(12), 3867–3894 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Frank, R., Pushnitski, A.: Kato smoothness and functions of perturbed self-adjoint operators. Adv. Math. 351, 343–387 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gebert, M., Küttler, H., Müller, P.: Anderson’s orthogonality catastrophe. Commun. Math. Phys. 329(3), 979–998 (2014)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Girela, D.: Analytic functions of bounded mean oscillation. In: Complex function spaces (Mekrijärvi, 1999), vol. 4, pp. 61–170Google Scholar
  10. 10.
    Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)Google Scholar
  11. 11.
    Leschke, H., Sobolev, A.V., Spitzer, W.: Scaling of Rényi entanglement entropies of the free Fermi-gas ground state: a rigorous proof. Phys. Rev. Lett. 112, 160403 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Peller, V.V.: Hankel operators in the theory of perturbations of unitary and self-adjoint operators. Funct. Anal. Appl. 19, 111–123 (1985)CrossRefGoogle Scholar
  13. 13.
    Potapov, D., Sukochev, F.: Operator-Lipschitz functions in Schatten–von Neumann classes. Acta Math. 207(2), 375–389 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pushnitski, A.: The spectral density of a difference of spectral projections. Commun. Math. Phys. 338(3), 1153–1181 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Pushnitski, A., Yafaev, D.: Best rational approximation of functions with logarithmic singularities. Constr. Approx. 46, 243–269 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pushnitski, A., Yafaev, D.: Spectral theory of piecewise continuous functions of self-adjoint operators. Proc. Lond. Math. Soc. (3) 108(5), 1079–1115 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Seiler, E., Simon, B.: Bounds in the Yukawa\({}_2\) quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45(2), 99–114 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    Simon, B.: Trace Ideals and Their Applications. American Mathematical Society, Providence (2005)zbMATHGoogle Scholar
  19. 19.
    Sobolev, A.V.: Functions of self-adjoint operators in ideals of compact operators. J. Lond. Math. Soc. (2) 95(1), 157–176 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sobolev, A.V.: Quasi-classical asymptotics for functions of Wiener–Hopf operators: smooth versus non-smooth symbols. Geom. Funct. Anal. 27(3), 676–725 (2017) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yafaev, D.: A remark concerning the theory of scattering for a perturbed polyharmonic operator. (Russian) Mat. Zametki 15, 445–454 (1974). English transl. in Math. Notes 15, 260–265 (1974)CrossRefGoogle Scholar
  22. 22.
    Yafaev, D.: Mathematical Scattering Theory: Analytic Theory. American Mathematical Society, Providence (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutLudwig-Maximilians Universität MünchenMunichGermany
  2. 2.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of MathematicsKing’s College LondonLondonUK

Personalised recommendations