Cosmic No-Hair in Spherically Symmetric Black Hole Spacetimes

  • João L. Costa
  • José NatárioEmail author
  • Pedro Oliveira


We analyze in detail the geometry and dynamics of the cosmological region arising in spherically symmetric black hole solutions of the Einstein–Maxwell-scalar field system with a positive cosmological constant. More precisely, we solve, for such a system, a characteristic initial value problem with data emulating a dynamic cosmological horizon. Our assumptions are fairly weak, in that we only assume that the data approach that of a subextremal Reissner–Nordström-de Sitter black hole, without imposing any rate of decay. We then show that the radius (of symmetry) blows up along any null ray parallel to the cosmological horizon (“near” \(i^+\)), in such a way that \(r=+\infty \) is, in an appropriate sense, a spacelike hypersurface. We also prove a version of the cosmic no-hair conjecture by showing that in the past of any causal curve reaching infinity both the metric and the Riemann curvature tensor asymptote to those of a de Sitter spacetime. Finally, we discuss conditions under which all the previous results can be globalized.



We thank Anne Franzen for sharing and allowing us to use Fig. 1. This work was partially supported by FCT/Portugal through UID/MAT/04459/2013 and Grant (GPSEinstein) PTDC/MAT-ANA/1275/2014. Pedro Oliveira was supported by FCT/Portugal through the LisMath scholarship PD/BD/52640/2014.


  1. 1.
    Andréasson, H., Ringström, H.: Proof of the cosmic no-hair conjecture in the T3-Gowdy symmetric Einstein–Vlasov setting. JEMS (to appear) Google Scholar
  2. 2.
    Beyer, F.: The cosmic no-hair conjecture: a study of the Nariai solutions. In: Ruffini, R., Damour, T., Jantzen, R.T. (eds.) Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity (2009)Google Scholar
  3. 3.
    Brill, D.R., Hayward, S.A.: Global structure of a black-hole cosmos and its extremes. Class. Quantum Gravity 11, 359–370 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chruściel, P., Costa, J., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 12 (2012) Google Scholar
  5. 5.
    Costa, J.L.: The spherically symmetric Einstein-scalar field system with positive and vanishing cosmological constant: a comparison. Gen. Relativ. Gravit. 45, 2415–2440 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Costa, J.L., Alho, A., Natário, J.: The problem of a self-gravitating scalar field with positive cosmological constant. Ann. Henri Poincaré 14, 1077–1107 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Costa, J.L., Girão, P., Natário, J., Silva, J.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 1. Well posedness and breakdown criterion. Class. Quantum Gravity 32, 015017 (2015)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Costa, J., Girão, P., Natário, J., Silva, J.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 2. Structure of the solutions and stability of the Cauchy horizon. Commun. Math. Phys. 339, 903–947 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Costa, J., Girão, P., Natário, J., Silva, J.: On the occurrence of mass inflation for the Einstein–Maxwell-scalar field system with a cosmological constant and an exponential Price law. arXiv:1707.08975
  10. 10.
    Costa, J.L., Natário, J., Oliveira, P.: Decay of solutions of the wave equation in expanding cosmological spacetimes. (in preparation)Google Scholar
  11. 11.
    Dafermos, M., Rendall, A.: Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter. Commun. Pure Appl. Math. 69, 815–908 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Friedrich, H.: On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587–609 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Friedrich, H.: Geometric Asymptotics and Beyond. arXiv:1411.3854
  14. 14.
    Gajic, D.: Linear waves on constant radius limits of cosmological black hole spacetimes. Adv. Theor. Math. Phys. (2014, to appear). arXiv:1412.5190v2
  15. 15.
    Hintz, P., Vasy, A.: The global non-linear stability of the Kerr-de Sitter family of black holes. arXiv:1606.04014
  16. 16.
    Hintz, P.: Non-linear stability of the Kerr-Newman-de Sitter family of charged black holes. arXiv:1612.04489
  17. 17.
    Kroon, J.V.: Conformal Methods in General Relativity. Cambridge University Press, Cambridge (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lubbe, C., Kroon, J.V.: A conformal approach for the analysis of the nonlinear stability of pure radiation cosmologies. Ann. Phys. 328, 1–25 (2013)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Oliynyk, T.: Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant. Commun. Math. Phys. 346, 293–312 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Oliveira, P.F.C.: Ph.D thesis, IST-ULisboa (in preparation)Google Scholar
  21. 21.
    Radermacher, K.: On the Cosmic No-Hair Conjecture in T2-symmetric non-linear scalar field spacetimes. arXiv:1712.01801
  22. 22.
    Rendall, A.: Asymptotics of solutions of the Einstein equations with positive cosmological constant. Ann. Henri Poincaré 5, 1041–1064 (2004). arXiv:gr-qc/0312020 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ringström, H.: On the Topology and Future Stability of the Universe. Oxford University Press, Oxford (2013)CrossRefzbMATHGoogle Scholar
  24. 24.
    Rodnianski, I., Speck, J.: The stability of the irrotational Euler–Einstein system with a positive cosmological constant. J. Eur. Math. Soc. 15, 2369–2462 (2013)CrossRefzbMATHGoogle Scholar
  25. 25.
    Schlue, V.: Global results for linear waves on expanding Kerr and Schwarzschild de Sitter cosmologies. Commun. Math. Phys. 334, 977–1023 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schlue, V.: Decay of the Weyl curvature in expanding black hole cosmologies. arXiv:1610.04172
  27. 27.
    Speck, J.: The nonlinear future-stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant. Sel. Math. New Ser. 18, 633–715 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tchapnda, S., Noutchegueme, N.: The surface-symmetric Einstein–Vlasov system with cosmological constant. Math. Proc. Camb. Philos. Soc. 138, 541–553 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Tchapnda, S., Rendall, A.: Global existence and asymptotic behavior in the future for the Einstein–Vlasov system with positive cosmological constant. Class. Quantum Gravity 20, 3037–3049 (2003)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Wald, R.: Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D 28, 2118–2120 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • João L. Costa
    • 1
    • 3
  • José Natário
    • 2
    • 3
    Email author
  • Pedro Oliveira
    • 2
    • 3
  1. 1.Mathematics DepartmentLisbon University Institute – ISCTELisbonPortugal
  2. 2.Mathematics DepartmentInstituto Superior Técnico ULisboaLisbonPortugal
  3. 3.CAMGSDInstituto Superior Técnico ULisboaLisbonPortugal

Personalised recommendations