Strongly Disordered Floquet Topological Systems

  • Jacob ShapiroEmail author
  • Clément Tauber


We study the strong disorder regime of Floquet topological systems in dimension two that describe independent electrons on a lattice subject to a periodic driving. In the spectrum of the Floquet propagator we assume the existence of an interval in which all states are localized—a mobility gap—extending previous studies which make the stronger spectral gap assumption. We devise a new approach to define the topological invariants by way of stretching the gap of a given system onto the whole circle. We show that such completely localized systems have natural indices that circumvent the relative construction and match with quantized magnetization and pumping observables from the physics literature. These indices obey a bulk-edge correspondence, which carries over to the stretched systems as well. Finally, these invariants are shown to coincide with those associated with the usual relative construction, which we also extend to the mobility gap regime.



The authors thank Gian Michele Graf for many useful discussions. J. S. thanks Netanel H. Lindner for his hospitality at the Technion in Israel and for elaborations on the completely localized edge index. C. T. thanks Alain Joye for his invitation at institut Fourier and fruitful discussions on localization for unitary operators.


  1. 1.
    Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A Math. Gen. 31, 6783–6806 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aizenman, M., Warzel, S.: Random Operators. Amer. Math. Soc. (2015)Google Scholar
  3. 3.
    Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B. 55, 1142–1161 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Asch, J., Bourget, O., Joye, A.: Chirality induced interface currents in the Chalker Coddington model. arXiv preprint. arXiv:1708.02120 (2017)
  5. 5.
    Asch, J., Bourget, O., Joye, A.: Dynamical localization of the Chalker-Coddington model far from transition. J. Stat. Phys. 147(1), 194–205 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carpentier, D., et al.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Combes, J.M., Thomas, L.: Asymptotic behaviour of eigenfunctions for multiparticle Schrodinger operators. Commun. Math. Phys. 34, 251–270 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Delplace, P., Fruchart, M., Tauber, C.: Phase rotation symmetry and the topology of oriented scattering networks. Phys. Rev. B 95, 205413 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Elbau, P., Graf, G.M.: Equality of bulk and edge Hall conductance revisited. Commun. Math. Phys. 229(3), 415–432 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Elgart, A., Graf, G.M., Schenker, J.: Equality of the bulk and edge Hall conductances in a mobility gap. Commun. Math. Phys. 259(1), 185–221 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Enss, V., Veselic, K.: Bound states and propagating states for time-dependent Hamiltonians. Ann. de l’l.H.P. Phys. Theorique. 39(2), 159–191 (1983)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fruchart, M., et al.: Probing (topological) Floquet states through DC transport. Physica E Low Dimens. Syst. Nanostruct. 75, 287–294 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Fruchart, M.: Complex classes of periodically driven topological lattice systems. Phys. Rev. B 93, 115429 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Fulga, I.C., Maksymenko, M.: Scattering matrix invariants of Floquet topological insulators. Phys. Rev. B 93, 075405 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Graf, G.M., Shapiro, J.: The bulk-edge correspondence for disordered chiral chains. Commun. Math. Phys. 363(3), 829–846 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Graf, G.M., Tauber, C.: Bulk-edge correspondence for two-dimensional Floquet topological insulators. Ann. Henri Poincare. 19(3), 709–741 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hamza, E., Joye, A., Stolz, G.: Dynamical localization for unitary Anderson models. Math. Phys. Anal. Geom. 12(4), 381 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hunziker, W., Sigal, I.M.: The quantum N-body problem. J. Math. Phys. 41(6), 3448–3510 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Joye, A.: Dynamical localization for d-dimensional random quantum walks. Quantum. Inf. Process. 11(5), 1251–1269 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kundu, A., Fertig, H.A., Seradjeh, B.: Effective theory of Floquet topological transitions. Phys. Rev. Lett. 113, 236803 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Mbarek, A.: Helffer-Sjostrand Formula for Unitary Operators. arXiv preprint. arXiv:1506.04537 (2015)
  22. 22.
    Nathan, F., et al.: Quantized magnetization density in periodically driven systems. Phys. Rev. Lett. 119, 186801 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Oka, T., Aoki, H.: Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Prodan, E., Schulz-Baldes, H.: Non-commutative odd Chern numbers and topological phases of disordered chiral systems. J. Funct. Anal. 271(5), 1150–1176 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Quelle, A., et al.: Driving protocol for a Floquet topological phase without static counterpart. New J. Phys. 19, (2017)Google Scholar
  26. 26.
    del Rio, R., et al.: Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization. Journal d’Analyse Mathematique 69(1), 153200 (1996)MathSciNetGoogle Scholar
  27. 27.
    Rodriguez-Vega, M., Fertig, H.A., Seradjeh, B.: Quantum noise detects Floquet topological phases. Phys. Rev. B 98, 041113 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    Roy, R., Harper, F.: Periodic table for Floquet topological insulators. Phys. Rev. B 96, 155118 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Rudner, M.S., et al.: Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013)Google Scholar
  30. 30.
    Sadel, C., Schulz-Baldes, H.: Topological boundary invariants for Floquet systems and quantum walks. Math. Phys. Anal. Geom. 20(4), 22 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Simon, B.: Cyclic vectors in the Anderson model. Rev. Math. Phys. 06(05a), 1183–1185 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tauber, C.: Effective vacua for Floquet topological phases: a numerical perspective on the switch-function formalism. Phys. Rev. B 97, 195312 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Tauber, C., Delplace, P.: Topological edge states in two-gap unitary systems: a transfer matrix approach. New J. Phys. 17(11), 115008 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Titum, P., et al.: Anomalous Floquet–Anderson insulator as a nonadiabatic quantized charge pump. Phys. Rev. X 6, 021013 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland

Personalised recommendations