Bulk–Boundary Correspondence for Sturmian Kohmoto-Like Models

  • Johannes KellendonkEmail author
  • Emil Prodan


We consider one-dimensional tight binding models on \(\ell ^2({{\mathbb {Z}}})\) whose spatial structure is encoded by a Sturmian sequence \((\xi _n)_n\in \{a,b\}^{{\mathbb {Z}}}\). An example is the Kohmoto Hamiltonian, which is given by the discrete Laplacian plus an on-site potential \(v_n\) taking value 0 or 1 according to whether \(\xi _n\) is a or b. The only non-trivial topological invariants of such a model are its gap labels. The bulk–boundary correspondence we establish here states that there is a correspondence between the gap label and a winding number associated with the edge states, which arises if the system is augmented and compressed onto half-space \(\ell ^2({{\mathbb {N}}})\). This has been experimentally observed with polaritonic waveguides. A correct theoretic explanation requires, however, first a smoothing out of the atomic motion via phason flips. With such an interpretation at hand, the winding number corresponds to the mechanical work through a cycle which the atomic motion exhibits on the edge states.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Baboux, F., Levy, E., Lemaitre, A., Gómez, C., Galopin, E., Gratiet, L.L., Sagnes, I., Amo, A., Bloch, J., Akkermans, E.: Measuring topological invariants from generalized edge states in polaritonic quasicrystals. Phys. Rev. B 95, 161114(R) (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Beckus, S.: Spectral approximation of aperiodic Schrodinger operators. PhD Thesis, Friedrich-Schiller-University, Jena (2016)Google Scholar
  3. 3.
    Beckus, S., Bellissard, J., de Nittis, G.: Spectral continuity for aperiodic quantum systems I. General theory. J. Func. Anal. 275, 2917–2977 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bellissard, J.: K-theory of \(C^*\)-algebras in solid state physics. In: Dorlas, T.C., Hugenholtz, N.M., Winnink, M. (eds.) Statistical Mechanics and Field Theory: Mathematical Aspects, pp. 99–156. Springer, Berlin (1986)CrossRefGoogle Scholar
  5. 5.
    Bellissard, J.: Gap labeling theorems for Schrödinger operators. In: Waldschmidt, M., Moussa, P., Luck, J.-M., Itzykson, C. (eds.) From Number Theory to Physics. Springer, Berlin (1992)Google Scholar
  6. 6.
    Bellissard, J., Iochum, B., Scoppola, E., Testard, D.: Spectral properties of one-dimensional quasi-crystals. Commun. Math. Phys. 125(3), 527–543 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bellissard, J., Iochum, B., Testard, D.: Continuity properties of the electronic spectrum of \(1D\) quasicrystals. Commun. Math. Phys. 141, 353–380 (1991)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Bernevig, B.A., Hughes, T.L., Zhang, S.-C.: Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Bandres, M.A., Rechtsman, M.C., Segev, M.: Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X 6, 011016 (2016)Google Scholar
  10. 10.
    Connes, A.: Non Commutative Geometry. Acad. Press, San Diego (1994)zbMATHGoogle Scholar
  11. 11.
    Dareau, A., Levy, E., Aguilera, M.B., Bouganne, R., Akkermans, E., Gerbier, F., Beugnon, J.: Direct measurement of Chern numbers in the diffraction pattern of a Fibonacci chain. arXiv:1607.00901v1 (2016)
  12. 12.
    Elliott, G., Natsume, T., Nest, R.: Cyclic cohomology for one-parameter smooth crossed products. Acta Math. 160, 285–305 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fu, L., Kane, C.L.: Topological insulators in three dimensions. Phys. Rev. B 76, 045302 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Forrest, A.H., Hunton, J.R., Kellendonk, J.: Cohomology of canonical projection tilings. Commun. Math. Phys. 226, 289–322 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hafezi, M., Mittal, S., Fan, J., Migdall, A., Taylor, J.M.: Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Haldane, F.D.M.: Model for a quantum Hall-effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015 (1988)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hatsugai, Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Herman, M.R.: Sur la conjugaison différentiable des difféomorphismes du cer- cle à des rotations. Pub. Math. IHES 49, 5–234 (1979)CrossRefGoogle Scholar
  19. 19.
    Hu, W., Pillay, J.C., Wu, K., Pasek, M., Shum, P.P., Chong, Y.D.: Measurement of a topological edge invariant in a microwave network. Phys. Rev. X 5, 011012 (2015)Google Scholar
  20. 20.
    Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y.S., Cava, R.J., Hasan, M.Z.: A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Kitaev, A.: Periodic table for topological insulators and superconductors (Advances in Theoretical Physics: Landau Memorial Conference). In: AIP Conference Proceedings, vol. 1134, pp. 22–30 (2009)Google Scholar
  22. 22.
    Kane, C.L., Lubensky, T.: Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2013)CrossRefGoogle Scholar
  23. 23.
    Kraus, Y.E., Lahini, Y., Ringel, Z., Verbin, M., Zilberberg, O.: Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Kohmoto, M., Oono, Y.: Cantor spectrum for an almost periodic Schrodinger operator and a dynamical map. Phys. Lett. 102A, 145–148 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    Kraus, Y.E., Ringel, Z., Zilberberg, O.: Four-dimensional quantum Hall effect in a two-dimensional quasicrystal. Phys. Rev. Lett. 111, 226401 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Kane, C.L., Mele, E.J.: Z(2) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Kellendonk, J.: Gap labelling and the pressure on the boundary. Commun. Math. Phys. 258, 751–768 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kellendonk, J., Lenz, D.: Equicontinuous Delone dynamical systems. Can. J. Math. 65, 149–170 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kellendonk, J., Richard, S.: Topological boundary maps in physics. In: Perspectives in Operator Algebras and Mathematical Physics, Theta Ser. Adv. Math. vol. 8, pp. 105–121. Theta, Bucharest (2008)Google Scholar
  31. 31.
    Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14, 87–119 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kellendonk, J., Schulz-Baldes, H.: Boundary maps for C\(^*\)-crossed products with \({{{\mathbb{R}}}}\) with an application to the quantum Hall effect. Commun. Math. Phys. 249, 611–637 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kellendonk, J., Zois, I.: Rotation numbers, boundary forces and gap labelling. J. Phys. A Math. Gen. 38(18), 3937 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Koenig, M., Wiedmann, S., Bruene, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.-L., Zhang, S.-C.: Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Kraus, Y.E., Zilberberg, O.: Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys. Rev. Lett. 109, 116404 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Le, T.T.Q.: Local rules for quasiperiodic tilings. In: Moody, R.V. (ed.) The Mathematics of Long Range Aperiodic Order, pp. 331–366. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  37. 37.
    Levy, E., Barak, A., Fisher, A., Akkermans, E.: Topological properties of Fibonacci quasicrystals: a scattering analysis of Chern numbers. arXiv:1509.04028v3 (2015)
  38. 38.
    Moore, J.E., Balents, L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Madsen, K.A., Bergholtz, E.J., Brouwer, P.W.: Topological equivalence of crystal and quasicrystal band structures. Phys. Rev. B 88, 125118 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories. Am. J. Math. 62, 1–42 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Mitchell, N.P., Nash, L.M., Hexner, D., Turner, A., Irvine, W.T.M.: Amorphous gyroscopic topological metamaterials. arXiv:1612.09267v1 (2016)
  43. 43.
    Nash, L.M., Kleckner, D., Read, A., Vitelli, V., Turner, A.M., Irvine, W.T.M.: Topological mechanics of gyroscopic metamaterials. Proc. Nat. Acad. Sci. 112, 14495–14500 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Pimsner, M., Voiculescu, D.: Exact sequences for K-groups of certain cross-products of C\(^*\) algebras. J. Oper. Theory 4, 93–118 (1980)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Prodan, E.: Virtual topological insulators with real quantized physics. Phys. Rev. B 91, 245104 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Prodan, E., Prodan, C.: Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103, 248101 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Paulose, J., Chen, B.-G., Vitelli, V.: Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys. 11, 153–156 (2015)CrossRefGoogle Scholar
  48. 48.
    Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Rechtsman, M.C., Zeuner, J.M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., Nolte, S., Segev, M., Szameit, A.: Photonic floquet topological insulators. Nature 496, 196–200 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Schulz-Baldes, H., Kellendonk, J., Richter, T.: Simultaneous quantization of edge and bulk Hall conductivity. J. Phys. A Math. Gen. 33, L27–L32 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    Simon, B.: Spectral averaging and the Krein spectral shift. Proc. AMS 126, 1409–1413 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Song, J.C.W., Rudner, M.S.: Chiral plasmons without magnetic field. Proc. Nat. Acad. Sci. (PNAS) 113, 4658–4663 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Tran, D.-T., Dauphin, A., Goldman, N., Gaspard, P.: Topological Hofstadter insulators in a two-dimensional quasicrystal. Phys. Rev. B 91, 085125 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    Tanese, D., Gurevich, E., Baboux, F., Jacqmin, T., Lemaitre, A., Galopin, E., Sagnes, I., Amo, A., Bloch, J., Akkermans, E.: Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. Phys. Rev. Lett. 112, 146404 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Verbin, M., Zilberberg, O., Kraus, Y.E., Lahini, Y., Silberberg, Y.: Observation of topological phase transitions in photonic quasicrystals. Phys. Rev. Lett. 110, 076403 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    Verbin, M., Zilberberg, O., Lahini, Y., Kraus, Y.E., Silberberg, Y.: Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B 91, 064201 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    Wang, Z., Chong, Y., Joannopoulos, J.D., Soljacic, M.: Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CNRS UMR 5208, Institut Camille Jordan, Université de LyonUniversité Claude Bernard Lyon 1VilleurbanneFrance
  2. 2.Department of Physics and Department of Mathematical SciencesYeshiva UniversityNew YorkUSA

Personalised recommendations