Advertisement

Annales Henri Poincaré

, Volume 20, Issue 7, pp 2295–2322 | Cite as

When Do Composed Maps Become Entanglement Breaking?

  • Matthias Christandl
  • Alexander Müller-HermesEmail author
  • Michael M. Wolf
Article
  • 43 Downloads

Abstract

For many completely positive maps repeated compositions will eventually become entanglement breaking. To quantify this behaviour we develop a technique based on the Schmidt number: If a completely positive map breaks the entanglement with respect to any qubit ancilla, then applying it to part of a bipartite quantum state will result in a Schmidt number bounded away from the maximum possible value. Iterating this result puts a successively decreasing upper bound on the Schmidt number arising in this way from compositions of such a map. By applying this technique to completely positive maps in dimension three that are also completely copositive we prove the so-called PPT squared conjecture in this dimension. We then give more examples of completely positive maps where our technique can be applied, e.g. maps close to the completely depolarizing map, and maps of low rank. Finally, we study the PPT squared conjecture in more detail, establishing equivalent conjectures related to other parts of quantum information theory, and we prove the conjecture for Gaussian quantum channels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Daniel Cariello for pointing out how his results [26, 27] together with the techniques from [22] imply Corollary 3.5. We also thank Ion Nechita for pointing out the different version of Theorem A.1. MC and AMH acknowledge financial support from the European Research Council (ERC Grant Agreement no 337603) and VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). MW acknowledges the hospitality of the QMATH Centre.

References

  1. 1.
    Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(06), 629–641 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)CrossRefGoogle Scholar
  3. 3.
    Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from bound entanglement. Phys. Rev. Lett. 94(16), 160502 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lami, L., Giovannetti, V.: Entanglement-breaking indices. J. Math. Phys. 56(9), 092201 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Pasquale, A., Giovannetti, V.: Quantifying the noise of a quantum channel by noise addition. Phys. Rev. A 86(5), 052302 (2012)CrossRefGoogle Scholar
  6. 6.
    De Pasquale, A., Mari, A., Porzio, A., Giovannetti, V.: Amendable Gaussian channels: restoring entanglement via a unitary filter. Phys. Rev. A 87(6), 062307 (2013)CrossRefGoogle Scholar
  7. 7.
    Lami, L., Giovannetti, V.: Entanglement-saving channels. J. Math. Phys. 57(3), 032201 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Christandl, M.: PPT square conjecture. In: Banff International Research Station Workshop: Operator Structures in Quantum Information Theory (2012)Google Scholar
  9. 9.
    Bäuml, S., Christandl, M., Horodecki, K., Winter, A.: Limitations on quantum key repeaters. Nat. Commun. 6, 6908 (2015)CrossRefGoogle Scholar
  10. 10.
    Christandl, M., Ferrara, R.: Private states, quantum data hiding, and the swapping of perfect secrecy. Phys. Rev. Lett. 119(22), 220506 (2017)CrossRefGoogle Scholar
  11. 11.
    Kennedy, M., Manor, N.A., Paulsen, V.I.: Composition of PPT maps. Quantum Inf. Comput. 18(5 & 6), 0472–0480 (2018)MathSciNetGoogle Scholar
  12. 12.
    Rahaman, M., Jaques, S., Paulsen, V.I.: Eventually entanglement breaking maps. J. Math. Phys. 59(6), 062201 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Terhal, B.M., Horodecki, P.: Schmidt number for density matrices. Phys. Rev. A 61(4), 040301 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Skowronek, Ł., Størmer, E., Życzkowski, K.: Cones of positive maps and their duality relations. J. Math. Phys. 50(6), 062106 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chruściński, D., Kossakowski, A.: On partially entanglement breaking channels. Open Syst. Inf. Dyn. 13(1), 17–26 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Woronowicz, S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10(2), 165–183 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tang, W.-S.: On positive linear maps between matrix algebras. Linear Algebra Appl. 79, 33–44 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(5), 333–339 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sanpera, A., Bruß, D., Lewenstein, M.: Schmidt-number witnesses and bound entanglement. Phys. Rev. A 63(5), 050301 (2001)CrossRefGoogle Scholar
  21. 21.
    Yang, Y., Leung, D.H., Tang, W.-S.: All 2-positive linear maps from M3(C) to M3(C) are decomposable. Linear Algebra Appl. 503, 233–247 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Huber, M., Lami, L., Lancien, C., Müller-Hermes, A.: High-dimensional entanglement in states with positive partial transposition. Phys. Rev. Lett. 121, 200503 (2018)CrossRefGoogle Scholar
  23. 23.
    Gurvits, L., Barnum, H.: Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A 66(6), 062311 (2002)CrossRefGoogle Scholar
  24. 24.
    Johnston, N.: Separability from spectrum for qubit–qudit states. Phys. Rev. A 88(6), 062330 (2013)CrossRefGoogle Scholar
  25. 25.
    Lami, L., Huber, M.: Bipartite depolarizing maps. J. Math. Phys. 57(9), 092201 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Cariello, D.: Separability for weakly irreducible matrices. Quantum Inf. Comput. 14(15–16), 1308–1337 (2014)MathSciNetGoogle Scholar
  27. 27.
    Cariello, D.: Does symmetry imply PPT property? Quantum Inf. Comput. 15(9–10), 812–824 (2015)MathSciNetGoogle Scholar
  28. 28.
    Heinosaari, T., Jivulescu, M.A., Reeb, D., Wolf, M.M.: Extending quantum operations. J. Math. Phys. 53(10), 102208 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Moravčíková, L., Ziman, M.: Entanglement-annihilating and entanglement-breaking channels. J. Phys. A Math. Theor. 43(27), 275306 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Müller-Hermes, A., Reeb, D., Wolf, M.M.: Positivity of linear maps under tensor powers. J. Math. Phys. 57(1), 015202 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Filippov, S.N., Rybár, T., Ziman, M.: Local two-qubit entanglement-annihilating channels. Phys. Rev. A 85(1), 012303 (2012)CrossRefGoogle Scholar
  32. 32.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Størmer, E.: Duality of cones of positive maps. Preprint arXiv:0810.4253 (2008)
  34. 34.
    Müller-Hermes, A.: Decomposability of linear maps under tensor powers. J. Math. Phys. 59(10), 102203 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Collins, B., Yin, Z., Zhong, P.: The PPT square conjecture holds generically for some classes of independent states. J. Phys. A Math. Theor. 51(42), 425301 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Vollbrecht, K.G.H., Wolf, M.M.: Activating distillation with an infinitesimal amount of bound entanglement. Phys. Rev. Lett. 88(24), 247901 (2002)CrossRefGoogle Scholar
  37. 37.
    Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001)CrossRefGoogle Scholar
  38. 38.
    Audenaert, K., Eisert, J., Jané, E., Plenio, M., Virmani, S., De Moor, B.: Asymptotic relative entropy of entanglement. Phys. Rev. Lett. 87(21), 217902 (2001)CrossRefGoogle Scholar
  39. 39.
    Christandl, M., Schuch, N., Winter, A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311(2), 397–422 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction, vol. 16. Walter de Gruyter, Berlin (2013)zbMATHGoogle Scholar
  42. 42.
    Chen, L., Yang, Y., Tang, W.-S.: Schmidt number of bipartite and multipartite states under local projections. Quantum Inf. Process. 16(3), 75 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Kraus, B., Cirac, J., Karnas, S., Lewenstein, M.: Separability in \(2\times \) N composite quantum systems. Phys. Rev. A 61(6), 062302 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.QMATH, Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Zentrum MathematikTechnische Universität MünchenGarchingGermany

Personalised recommendations