Advertisement

The Minkowski Formula and the Quasi-Local Mass

  • Po-Ning ChenEmail author
  • Mu-Tao Wang
  • Shing-Tung Yau
Article
  • 2 Downloads

Abstract

In this article, we estimate the quasi-local energy with reference to the Minkowski spacetime (Wang and Yau in Phys Rev Lett 102(2):021101, 2009; Commun Math Phys 288(3):919–942, 2009), the anti-de Sitter spacetime (Chen et al. in Commun Anal Geom, 2016. arXiv:1603.02975), or the Schwarzschild spacetime (Chen et al. in Adv Theor Math Phys 22(1):1–23, 2018). In each case, the reference spacetime admits a conformal Killing–Yano 2-form which facilitates the application of the Minkowski formula in Wang et al. (J Differ Geom 105(2):249–290, 2017) to estimate the quasi-local energy. As a consequence of the positive mass theorems in Liu and Yau (J Am Math Soc 19(1):181–204, 2006) and Shi and Tam (Class Quantum Gravity 24(9):2357–2366, 2007) and the above estimate, we obtain rigidity theorems which characterize the Minkowski spacetime and the hyperbolic space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Arnowitt, R., Deser, S., Misner, C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. (2) 122, 997–1006 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ashtekar, A., Hansen, R.O.: A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 19, 1542–1566 (1978)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, P.-N., Wang, Y.-K., Wang, M.-T., Yau, S.-T.: Quasi-local energy with respect to a static spacetime. Adv. Theor. Math. Phys. 22(1), 1–23 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, P.-N., Wang, M.-T., Yau, S.-T.: Quasi-local energy with respect to de Sitter/anti-de Sitter reference. Commun. Anal. Geom. arXiv:1603.02975 (2016, to appear)
  5. 5.
    Cohn-Vossen, S.: Zwei Stze ber die Starrheit der Eiflachen. Nachr. Ges. Wiss. zu Gttingen, pp. 125–134 (1927)Google Scholar
  6. 6.
    Chruściel, P.: A remark on the positive-energy theorem. Class. Quantum Gravity 3, L115–L121 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fan, X.-Q., Shi, Y., Tam, L.-F.: Large-sphere and small-sphere limits of the Brown–York mass. Commun. Anal. Geom. 17(1), 37–72 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Herzlich, M.: Computing asymptotic invariants with the Ricci tensor on asymptotically flat and asymptotically hyperbolic manifolds. Ann. Henri Poincaré 17(12), 3605–3617 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, C.-C.M., Yau, S.-T.: Positivity of quasi-local mass. II. J. Am. Math. Soc. 19(1), 181–204 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Miao, P., Tam, L.-F., Xie, N.: Quasi-local mass integrals and the total mass. J. Geom. Anal. 27(2), 1323–1354 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57(4), 447–495 (1903)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Schoen, R.: The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Commun. Pure Appl. Math. 41, 317–392 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shi, Y., Tam, L.-F.: Rigidity of compact manifolds and positivity of quasi-local mass. Class. Quantum Gravity 24(9), 2357–2366 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, Y.-K.: A Spacetime Alexandrov theorem. Ph.D. thesisGoogle Scholar
  15. 15.
    Wang, Y.-K., Wang, M.-T., Zhang, X.: Minkowski formulae and Alexandrov theorems in spacetime. J. Differ. Geom. 105(2), 249–290 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, M.-T., Yau, S.-T.: Quasilocal mass in general relativity. Phys. Rev. Lett. 102(2), 021101 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, M.-T., Yau, S.-T.: Isometric embeddings into the Minkowski space and new quasi-local mass. Commun. Math. Phys. 288(3), 919–942 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California, RiversideRiversideUSA
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA
  3. 3.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations