Advertisement

Annales Henri Poincaré

, Volume 20, Issue 2, pp 445–480 | Cite as

The Reduced Phase Space of Palatini–Cartan–Holst Theory

  • Alberto S. Cattaneo
  • Michele SchiavinaEmail author
Article
  • 14 Downloads

Abstract

General relativity in four dimensions can be reformulated as a gauge theory, referred to as Palatini–Cartan–Holst theory. This paper describes its reduced phase space using a geometric method due to Kijowski and Tulczyjew and its relation to that of the Einstein–Hilbert approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Giovanni Canepa for several constructive discussions, and Friedrich Hehl for valuable comments about the controversy in the nomenclature. We thank G. Canepa and the anonymous referee for having found flaws in previous versions of the article.

References

  1. 1.
    Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 18 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barbero, G,J.F.: Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 51, 5507 (1995)ADSMathSciNetGoogle Scholar
  3. 3.
    Batalin, I.A., Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122(2), 157–164 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Batalin, I.A., Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. B 69(3), 309–312 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Blagojević, M., Hehl, F.W.: Gauge Theories of Gravitation: A Reader with Commentaries. Imperial College Press, London (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cartan, E.: Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion. C. R. Acad. Sci. 174, 593–595 (1922). (Comptes rendus hebdomadaires des séances de l’Académie des sciences 174, 437–439, 593–595, 734–737, 857–860, 1104–1107)zbMATHGoogle Scholar
  8. 8.
    Cattaneo, A.S., Mnëv, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cattaneo, A.S., Mnev, P., Reshetikin, N.: Classical and quantum Lagrangian field theories with boundary. In: Proceedings of the Corfu Summer Institute 2011 School and Workshops on Elementary Particle Physics and Gravity, Corfu, Greece, PoS(Corfu2011)044 (2011)Google Scholar
  10. 10.
    Cattaneo, A.S., Schiavina, M.: BV-BFV approach to general relativity, Einstein–Hilbert action. J. Math. Phys. 57(2), 023515 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cattaneo, A.S., Schiavina, M.: BV-BFV approach to General Relativity: Palatini–Cartan–Holst action. arXiv:1707.06328
  12. 12.
    Cattaneo, A.S., Schiavina, M.: On time. Lett. Math. Phys. 107(2), 375–408 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cattaneo, A.S., Schiavina, M., Selliah, I.: BV equivalence between triadic gravity and BF theory in three dimensions. Lett. Math. Phys. 108, 1873–1884 (2018).  https://doi.org/10.1007/s11005-018-1060-5 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Einstein, A.: Einheitliche Feldtheorie yon Gravitation und Elektrizität. Sitzungsber. Pruess. Akad. Wiss. 414 (1925)Google Scholar
  16. 16.
    Ferraris, M., Francaviglia, M., Reina, C.: Variational formulation of general relativity from 1915 to 1925 “Palatini’s method” discovered by Einstein in 1925. Gen. Relativ. Gravit. 14(3), 243–254 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Floreanini, R., Percacci, R.: Palatini formalism and new canonical variables for GL(4)-invariant gravity. Class. Quantum Gravity 7, 1805 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7(1), 65–222 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hojman, R., Mukku, C., Sayed, W.A.: Parity violation in metric-torsion theories of gravitation. Phys. Rev. D 22, 1915 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    Holst, S.: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev. D 53, 5966 (1996)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Immirzi, G.: Real and complex connections for canonical gravity. Class. Quantum Gravity 14, L177 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kijowski, J., Tulczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture notes in Physics, vol. 107. Springer, Berlin (1979)Google Scholar
  24. 24.
    Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Palatini, A.: Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton. Rend. Circ. Mat. Palermo 43, 203 (1919). (English translation by R.Hojman and C. Mukku in P.G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980))CrossRefzbMATHGoogle Scholar
  26. 26.
    Perez, A., Rezende, D.J.: Four-dimensional Lorentzian Holst action with topological terms. Phys. Rev. D 79, 064026 (2009)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Rovelli, C., Thiemann, T.: Immirzi parameter in quantum general relativity. Phys. Rev. D 57, 1009 (1998)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Schaetz, F.: BFV-complex and higher homotopy structures. Commun. Math. Phys. 286(2), 399–443 (2009)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Schaetz, F.: Invariance of the BFV complex. Pac. J. Math. 248(2), 453–474 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Schiavina, M.: BV-BFV Approach to General Relativity. PhD Thesis, University of Zürich (2016)Google Scholar
  31. 31.
    Sciama, D.: The physical structure of general relativity. Rev. Mod. Phys. 36, 463 (1964)ADSCrossRefGoogle Scholar
  32. 32.
    Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2008)Google Scholar
  33. 33.
    Wise, D.: Symmetric space Cartan connections and gravity in three and four dimensions. SIGMA 5, 080 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut für MathematikZurichSwitzerland
  2. 2.Department of MathematicsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations