Quantum Lattice Gauge Fields and Groupoid \(\hbox {C}^{*}\)-Algebras

  • Francesca Arici
  • Ruben Stienstra
  • Walter D. van Suijlekom
Open Access


We present an operator-algebraic approach to the quantization and reduction of lattice field theories. Our approach uses groupoid \(\hbox {C}^{*}\)-algebras to describe the observables. We introduce direct systems of Hilbert spaces and direct systems of (observable) \(\hbox {C}^{*}\)-algebras, and, dually, corresponding inverse systems of configuration spaces and (pair) groupoids. The continuum and thermodynamic limit of the theory can then be described by taking the corresponding limits, thereby keeping the duality between the Hilbert space and observable \(\hbox {C}^{*}\)-algebra on the one hand, and the configuration space and the pair groupoid on the other. Since all constructions are equivariant with respect to the gauge group, the reduction procedure applies in the limit as well.


  1. 1.
    Aastrup, J., Grimstrup, J.M.: Intersecting quantum gravity with noncommutative geometry: a review. SIGMA 8, 018 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aastrup, J., Grimstrup, J.M., Nest, R.: On spectral triples in quantum gravity. II. J. Noncommut. Geom. 3, 47–81 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy \(\text{C}^{\ast }\)- algebras. Knots Quantum Gravity 21–61 (1994)Google Scholar
  4. 4.
    Araki, H., Woods, E.J.: Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas. J. Math. Phys. 4, 637–662 (1963)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J., Thiemann, T.: Coherent state transforms for spaces of connections. J. Funct. Anal. 135, 519–551 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baez, J.C.: Generalized measures in gauge theory. Lett. Math. Phys. 31, 213–223 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baez, J.C.: Spin networks in gauge theory. Adv. Math. 117, 253–272 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buneci, M.R.: Groupoid \(\text{ C }^{\ast }\)-algebras. Surv. Math. Appl. 1, 71–98 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fischer, E., Rudolph, G., Schmidt, M.: A lattice gauge model of singular Marsden–Weinstein reduction. Part I. Kinematics. J. Geom. Phys. 57, 1193–1213 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grundling, H., Rudolph, G.: QCD on an infinite lattice. Commun. Math. Phys. 318, 717–766 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grundling, H., Rudolph, G.: Dynamics for QCD on an infinite lattice. Commun. Math. Phys. 349, 1163–1202 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hall, B.: The Segal–Bargmann “coherent state” transform for compact lie groups. J. Funct. Anal. 122, 103–151 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Huebschmann, J.: Singular Poisson-Kähler geometry of stratified Kähler spaces and quantization. Trav. Math. 19, 27–63 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Huebschmann, J., Rudolph, G., Schmidt, M.: A gauge model for quantum mechanics on a stratified space. Commun. Math. Phys. 286, 459–494 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kijowski, J.: Symplectic geometry and second quantization. Rep. Math. Phys. 11, 97–109 (1977)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kijowski, J., Rudolph, G.: On the Gauss law and global charge for QCD. J. Math. Phys. 43, 1796–1808 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kijowski, J., Rudolph, G.: Charge superselection sectors for QCD on the lattice. J. Math. Phys. 46, 032303 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kijowski, J., Okołów, A.: A modification of the projective construction of quantum states for field theories. J. Math. Phys. 58, 062303 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kogut, J., Susskind, L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    Landsman, N.P.: Rieffel induction as generalized quantum Marsden–Weinstein reduction. J. Geom. Phys. 15, 285–319 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  23. 23.
    Lanéry, S., Thiemann, T.: Projective limits of state spaces I. Classical formalism. J. Geom. Phys. 111, 6–39 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lanéry, S., Thiemann, T.: Projective limits of state spaces II. Quantum formalism. J. Geom. Phys. 116, 10–51 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lanéry, S., Thiemann, T.: Projective limits of state spaces III. Toy-models. J. Geom. Phys. 123, 98–126 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lanéry, S., Thiemann, T.: Projective limits of state spaces IV. Fractal label sets. J. Geom. Phys. 123, 127–155 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lanéry, S.: Projective limits of state spaces: quantum field theory without a vacuum. EJTP 14, 1–20 (2018)Google Scholar
  28. 28.
    Lewandowski, J.: Topological measure and graph-differential geometry on the quotient space of connections. Int. J. Theoret. Phys. 3, 207–211 (1994)ADSMathSciNetGoogle Scholar
  29. 29.
    Maclane, S.: Categories for the Working Mathematician. Springer, Berlin (1998)zbMATHGoogle Scholar
  30. 30.
    Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Marolf, D., Mourão, J.M.: On the support of the Ashtekar–Lewandowski measure. Comm. Math. Phys. 170, 583–605 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Muhly, P.S., Renault, J.N., Williams, D.P.: Equivalence and isomorphism for groupoid \(\text{ C }^{\ast }\)- algebras. J. Oper. Theory 17, 3–22 (1987)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Okołów, A.: Construction of spaces of kinematic quantum states for field theories via projective techniques. Class. Quantum Grav. 30, 195003 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Paterson, A.: Groupoids, Inverse Semigroups, and their Operator Algebras. Birkhäuser, Basel (1999)CrossRefzbMATHGoogle Scholar
  35. 35.
    Renault, J.: A Groupoid Approach to C\(^\ast \)-Algebras. Springer, Berlin (1980)CrossRefzbMATHGoogle Scholar
  36. 36.
    Rendall, A.: Comment on a paper of A. Ashtekar and C. J. Isham. Class. Quantum Grav. 10, 605–608 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ribes, L., Zalesskii, P.: Profinite Groups. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  38. 38.
    Rieffel, M.A.: Induced representation of C\(^\ast \)-algebras. Adv. Math. 13, 176–257 (1974)CrossRefzbMATHGoogle Scholar
  39. 39.
    Rieffel, M.A.: Quantization and operator algebras. XIIth International Congress of Mathematical Physics (ICMP ’97) (Brisbane), 254–260, Int. Press, Cambridge, MA (1999)Google Scholar
  40. 40.
    Rudin, W.: Functional Analysis. McGraw-hill, Inc., NY (1991)zbMATHGoogle Scholar
  41. 41.
    Schwartz, L.: Radon Measures. Oxford University Press, Oxford (1973)zbMATHGoogle Scholar
  42. 42.
    Yngvason, J.: The role of type III factors in quantum field theory. Rep. Math. Phys. 55, 135–147 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Wilson, K.G.: Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Francesca Arici
    • 1
  • Ruben Stienstra
    • 1
  • Walter D. van Suijlekom
    • 1
  1. 1.Institute for Mathematics, Astrophysics and Particle PhysicsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations