Annales Henri Poincaré

, Volume 19, Issue 10, pp 3031–3051 | Cite as

Elliptic Systems with Some Superlinear Assumption Only Around the Origin

  • Patricio Cerda
  • Marco Aurelio SoutoEmail author
  • Pedro Ubilla


In this paper, using a priori bound techniques we study existence of positive solutions of the elliptic system:
$$\begin{aligned} \left\{ \begin{array}{lll} -\text{ div }(|x|^{\alpha _1}\nabla u) = |x|^{\beta _1} f(|x|,u,v) \ \ x \in B, \\ -\text{ div }(|x|^{\alpha _2}\nabla v) = |x|^{\beta _2} g(|x|,u,v) \ \ x \in B, \\ u(x) = 0 =v(x), \ \ \ x \in \partial B. \end{array} \right. \end{aligned}$$
where B is the unitary ball centered at the origin. Assuming that fg are nonnegative nonlinearities and that \(f(|x|,u,v)+g(|x|,u,v)\) is superlinear at 0 and at \(\infty \), we establish some results of existence of one positive solution. As an application, we establish two positive solutions for some non-homogeneous elliptic system. The main novelties here are that the nonlinearities could have growth above the critical hyperbola on some part of the domain as well as only local superlinear hypotheses at \(\infty \)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boccardo, L., de Figueiredo, D.G.: Some remarks on a system of quasilinear elliptic equations. Nonlinear Differ. Equ. Appl. 9(3), 309–323 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Clément, Ph, de Figueiredo, D.G., Mitidieri, E.: Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17, 923–940 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Figueiredo, D.G.: Positive solutions of semilinear elliptic equations. Springer Lect. Notes Math. 957, 34–87 (1982)CrossRefGoogle Scholar
  4. 4.
    de Figueiredo, D.G., Felmer, P.L.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343, 99–116 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    de Figueiredo, D.G., Magalhaes, C.A.: On nonquadratic hamiltonian elliptic systems. Adv. Differ. Equ. 1(5), 881–898 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    de Figueiredo, D.G., do Ó, J.M., Ruf, B.: Non variational elliptic systems in dimension two: a priori bounds and existence of positive solutions. J. Fixed Point Theory Appl. 4, 77–96 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ruf, B.: Superlinear elliptic equations and systems. In: Chipot, M. (ed.) Handbook of Differential Equations and Systems, vol. 5. Elsevier, Amsterdam (2008)Google Scholar
  8. 8.
    Felmer, P., Manásevich, R.F., de Thélin, F.: Existence and uniqueness of positive solutions for certain quasilinear elliptic systems. Commun. Partial Differ. Equ. 17, 2013–2029 (1992)MathSciNetzbMATHGoogle Scholar
  9. 9.
    de Figueiredo, D.G.: Semilinear elliptic systems: a survey of superlinear problems. Resenhas 2(4), 373–391 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bonheure, D., Moreira dos Santos, E., Tavares, H.: Hamiltonian elliptic systems: a guide to variational frameworks. Port. Math. 71(3–4), 301–395 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    de Figueiredo, D.G., Felmer, P.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343, 99–116 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hulshof, J., van der Vorst, R.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114, 32–58 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Clément, Ph, Felmer, P., Mitidieri, E.: Homoclinic orbits for a class of infinite-dimensional Hamiltonian systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 24(2), 367–393 (1997)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Clément, Ph, Van der Vorst, R.C.A.M.: On a semilinear elliptic system. Differ. Integral Equ. 8(6), 1317–1329 (1995)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ramos, M., Tavares, H.: Solutions with multiple spike patterns for an elliptic system. Calc. Var. Partial Differ. Equ. 31(1), 1–25 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Azizieh, C., Clément, P., Mitidieri, E.: Existence and a priori estimates for positive solutions of p-Laplace systems. J. Differ. Equ. 184(2), 422–442 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, W., Dupaigne, L., Ghergu, M.: A new critical curve for the Lane–Emden system. Discrete Contin. Dyn. Syst. 34(6), 2469–2479 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chen, Z., Lin, C.-S., Zou, W.: Monotonicity and nonexistence results to cooperative systems in the half space. J. Funct. Anal. 266(2), 1088–1105 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cowan, C.: Liouville theorems for stable Lane–Emden systems with biharmonic problems. Nonlinearity 26(8), 2357–2371 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fazly, M., Ghoussoub, N.: On the Hénon–Lane–Emden conjecture. Discrete Contin. Dyn. Syst. 34(6), 2513–2533 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ruiz, D.: A priori estimates and existence of positive solutions for strongly nonlinear problems. J. Differ. Equ. 199, 96–114 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kazdan, J.L., Kramer, R.J.: Invariant criteria for existence of solutions to second-order quasilinear elliptic equations. Commun. Pure Appl. Math. 31, 619–645 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Quittner, P., Souplet, Ph: A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces. Arch. Ration. Mech. Anal. 174, 49–81 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    de Figueiredo, D., Lions, P.L., Nussbaum, R.D.: A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. 61, 41–63 (1982)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Krasnoselskii, M.A.: Fixed point of cone-compressing or cone-extending operators. Sov. Math. Dokl. 1, 1285–1288 (1960)MathSciNetGoogle Scholar
  26. 26.
    Wang, Z.-Q., Willem, M.: Caffarelli–Kohn–Nirenberg inequalities with reminder terms. J. Funct. Anal. 203, 550–568 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xuan, B.: The solvability of Brezis–Nirenberg type problems of singular quasilinear elliptic equation. arXiv: math/0403549v1 (2004)
  28. 28.
    Vasquez, M.A.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patricio Cerda
    • 1
  • Marco Aurelio Souto
    • 2
    Email author
  • Pedro Ubilla
    • 1
  1. 1.Departamento de Matemática y C. C.Universidad de Santiago de ChileSantiagoChile
  2. 2.Departamento de MatemáticaUniversidade Federal de Campina GrandeCampina GrandeBrazil

Personalised recommendations