On the Global Limiting Absorption Principle for Massless Dirac Operators
Article
First Online:
Received:
Accepted:
- 1 Downloads
Abstract
We prove a global limiting absorption principle on the entire real line for free, massless Dirac operators \(H_0 = \alpha \cdot (-i \nabla )\) for all space dimensions \(n \in {{\mathbb {N}}}\), \(n \geqslant 2\). This is a new result for all dimensions other than three, in particular, it applies to the two-dimensional case which is known to be of some relevance in applications to graphene. We also prove an essential self-adjointness result for first-order matrix-valued differential operators with Lipschitz coefficients.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Sc. Norm. Sup. Pisa Ser. 4 2, 151–218 (1975)MATHGoogle Scholar
- 2.Aiba, D.: Absence of zero resonances of massless Dirac operators. Hokkaido Math. J. 45, 263–270 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 3.Amrein, W., Boutet de Monvel, A., Georgescu, V.: \(C_0\)-Groups, Commutator Methods and Spectral Theory of \(N\)-Body Hamiltonians. Progress in Mathematics, vol. 135. Birkhäuser, Basel (1996)CrossRefMATHGoogle Scholar
- 4.Balinsky, A., Evans, W.D.: Spectral Analysis of Relativistic Operators. Imperial College Press, London (2011)MATHGoogle Scholar
- 5.Balslev, E., Helffer, B.: Limiting absorption principle and resonances for the Dirac operator. Adv. Appl. Math. 13, 186–215 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 6.Bandara, L., Saratchandran, H.: Essential self-adjointness of powers of first-order differential operators on non-compact manifolds with low-regularity metrics. J. Funct. Anal. 273, 3719–3758 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 7.Baumgärtel, H., Wollenberg, M.: Mathematical Scattering Theory. Akademie Verlag, Berlin (1983)CrossRefMATHGoogle Scholar
- 8.Ben-Artzi, M., Devinatz, A.: The limiting absorption principle for partial differential operators. Mem. Am. Math. Soc. 66(364), 1–70 (1987)MathSciNetMATHGoogle Scholar
- 9.Boussaid, N., Golénia, S.: Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies. Commun. Math. Phys. 299, 677–708 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
- 10.Boutet de Monvel-Berthier, A., Manda, D., Purice, R.: Limiting absorption principle for the Dirac operator. Ann. Inst. H. Poincaré 58, 413–431 (1993)MathSciNetMATHGoogle Scholar
- 11.Boutet de Monvel, A., Mantoiu, M.: The method of the weakly conjugate operator. In: Apagyi, B., Endrédi, G., Lévay, P. (eds.) Inverse and Algebraic Quantum Scattering Theory. Springer, Heidelberg (1997)Google Scholar
- 12.Carey, A., Gesztesy, F., Levitina, G., Nichols, R., Sukochev, F., and Zanin, D.: On the limiting absorption principle for massless Dirac operators (in preparation)Google Scholar
- 13.Carey, A., Gesztesy, F., Levitina, G., Potapov, D., Sukochev, F., Zanin, D.: On index theory for non-Fredholm operators: a \((1+1)\)-dimensional example. Math. Nachr. 289, 575–609 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 14.Carey, A., Gesztesy, F., Levitina, G., Sukochev, F.: On the index of a non-Fredholm model operator. Oper. Matrices 10, 881–914 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 15.Carey, A., Gesztesy, F., Grosse, H., Levitina, G., Potapov, D., Sukochev, F., Zanin, D.: Trace formulas for a class of non-Fredholm operators: a review. Rev. Math. Phys. 28(10), 1630002 (2016). (55 pages)MathSciNetCrossRefMATHGoogle Scholar
- 16.Carey, A., Gesztesy, F., Potapov, D., Sukochev, F., Tomilov, Y.: On the Witten index in terms of spectral shift functions. J. Anal. Math. 132, 1–61 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 17.Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)MathSciNetCrossRefMATHGoogle Scholar
- 18.Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)MATHGoogle Scholar
- 19.Daude, T.: Scattering theory for massless Dirac fields with long-range potentials. J. Math. Pures Appl. 84, 615–665 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
- 20.Erdoğan, M.B., Goldberg, M., Green, W.R.: Limiting absorption principle and Strichartz estimates for Dirac operators in two and higher dimensions. arXiv:1706.05257
- 21.Erdoğan, M.B., Goldberg, M., Schlag, W.: Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in \({\mathbb{R}}^3\). J. Eur. Math. Soc. 10, 507–531 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 22.Erdoğan, M.B., Goldberg, M., Schlag, W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687–722 (2009)MathSciNetMATHGoogle Scholar
- 23.Erdoğan, M.B., Green, W.R.: The Dirac equation in two dimensions: dispersive estimates and classification of threshold obstructions. Commun. Math. Phys. 352, 719–757 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
- 24.Faris, W.G.: Self-Adjoint Operators. Lecture Notes in Mathematics, vol. 433. Springer, Berlin (1975)MATHGoogle Scholar
- 25.Forsyth, I., Mesland, B., Rennie, A.: Dense domains, symmetric operators and spectral triples. N. Y. J. Math. 20, 1001–1020 (2014)MathSciNetMATHGoogle Scholar
- 26.Georgescu, V., Măntoiu, M.: On the spectral theory of singular Dirac type Hamiltonians. J. Oper. Theory 46, 289–321 (2001)MathSciNetMATHGoogle Scholar
- 27.Gérard, C.: A proof of the abstract limiting absorption principle by energy estimates. J. Funct. Anal. 254, 2707–2724 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 28.Golénia, S., Jecko, T.: A new look at Mourre’s commutator theory. Complex Anal. Oper. Theory 1, 399–422 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 29.Herbst, I.: Spectral theory of the operator \((p^2 + m^2)^{1/2} - Z e^2 /r\). Commun. Math. Phys. 53, 285–294 (1977)ADSCrossRefMATHGoogle Scholar
- 30.Higson, N., Roe, J.: Analytic \(K\)-Homology. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)MATHGoogle Scholar
- 31.Iftimovici, A., Măntoiu, M.: Limiting absorption principle at critical values for the Dirac operator. Lett. Math. Phys. 49, 235–243 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 32.Kaad, J.: Differentiable absorption of Hilbert \(C^*\)-modules, connections, and lifts of unbounded operators. J. Noncommut. Geom. 11, 1037–1068 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 33.Kaad, J., Lesch, M.: A local global principle for regular operators in Hilbert \(C^*\)-modules. J. Funct. Anal. 262(10), 4540–4569 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 34.Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1966)MathSciNetCrossRefMATHGoogle Scholar
- 35.Kuroda, S.T.: An Introduction to Scattering Theory. Aarhus University Lecture Notes Series, No. 51 (1978)Google Scholar
- 36.Măntoiu, M., Pascu, M.: Global resolvent estimates for multiplication operators. J. Oper. Theory 36, 283–294 (1996)MathSciNetMATHGoogle Scholar
- 37.Mesland, B., Rennie, A.: Nonunital spectral triples and metric completeness in unbounded \(KK\)-theory. J. Funct. Anal. 271(9), 2460–2538 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 38.Pladdy, C., Saitō, Y., Umeda, T.: Resolvent estimates for the Dirac operator. Analysis 15, 123–149 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 39.Pladdy, C., Saitō, Y., Umeda, T.: Radiation condition for Dirac operators. J. Math. Kyoto Univ. 37(4), 567–584 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 40.Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York (1978)MATHGoogle Scholar
- 41.Richard, S.: Some improvements in the method of weakly conjugate operator. Lett. Math. Phys. 76, 27–36 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
- 42.Ruzhansky, M., Sugimoto, M.: Structural resolvent estimates and derivative nonlinear Schrödinger equations. Commun. Math. Phys. 314, 281–304 (2012)ADSCrossRefMATHGoogle Scholar
- 43.Saitō, Y., Umeda, T.: The zero modes and zero resonances of massless Dirac operators. Hokkaido Math. J. 37, 363–388 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 44.Vogelsang, V.: Absolutely continuous spectrum of Dirac operators for long-range potentials. J. Funct. Anal. 76, 67–86 (1988)MathSciNetCrossRefMATHGoogle Scholar
- 45.Yafaev, D.R.: Mathematical Scattering Theory. General Theory. Amer. Math. Soc, Providence, RI (1992)CrossRefMATHGoogle Scholar
- 46.Yafaev, D.R.: Mathematical Scattering Theory. Analytic Theory. Math. Surveys and Monographs, Vol. 158, Amer. Math. Soc., Providence, RI (2010)Google Scholar
- 47.Yamada, O.: On the principle of limiting absorption for the Dirac operator. Publ. RIMS, Kyoto Univ. 8, 557–577 (1972/73)Google Scholar
- 48.Yamada, O.: Eigenfunction expansions and scattering theory for Dirac operators. Publ. RIMS, Kyoto Univ. 11, 651–689 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 49.Yamada, O.: A remark on the limiting absorption method for Dirac operators. Proc. Japan. Acad. Ser. A 69, 243–246 (1993)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018