The Shape of the Emerging Condensate in Effective Models of Condensation

Article

Abstract

We consider effective models of condensation where the condensation occurs as time t goes to infinity. We provide natural conditions under which the buildup of the condensate occurs on a spatial scale of 1 / t and has the universal form of a Gamma density. The exponential parameter of this density is determined only by the equation and the total mass of the condensate, while the power law parameter may in addition depend on the decay properties of the initial condition near the condensation point. We apply our results to some examples, including simple models of Bose–Einstein condensation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buffet, E., de Smedt, P., Pulé, J.V.: On the dynamics of Bose–Einstein condensation. Annales de l’Institut Henri Poincaré (C) Analyse non linéaire 1, 413–451 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Buffet, E., de Smedt, P., Pulé, J.V.: The dynamics of the open bose gas. Ann. Phys. 155, 269–304 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chatterjee, S., Diaconis, P.: Fluctuations of the Bose–Einstein condensate. J. Phys. A Math. Theor. 47(8), 085201 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dereich, S.: Preferential attachment with fitness: unfolding the condensate. Electron. J. Probab. 21(3), 1–38 (2016)MathSciNetMATHGoogle Scholar
  5. 5.
    Dereich, S., Mörters, P.: Emergence of condensation in Kingmanâs model of selection and mutation. Acta Appl. Math. 127, 17–26 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dereich, S., Mailler, C., Mörters, P.: Nonextensive condensation in reinforced branching processes. Ann. Appl. Probab. 27, 2539–2568 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Escobedo, M., Mischler, S.: Equation de Boltzmann quantique homogene: existence et comportement asymptotique. C. R. Acad. Sci. Paris Serie I 329, 593–598 (1999)ADSCrossRefMATHGoogle Scholar
  8. 8.
    Escobedo, M., Mischler, S.: On a quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl. 80, 471–515 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Escobedo, M., Mischler, S., Velázquez, J.J.L.: Asymptotic description of Dirac mass formation in kinetic equations for quantum particles. J. Differ. Equ. 202, 208–230 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Escobedo, M., Velázquez, J.J.L.: Finite time blow-up and condensation for the bosonic Nordheim equation. Invent. Math. 200, 761–847 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kingman, J.F.C.: A simple model for the balance between selection and mutation. J. Appl. Probab. 15, 1–12 (1978)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lu, X.: On isotropic distributional solutions to the Boltzmann equation for Bose–Einstein particles. J. Stat. Phys. 116, 1597–1649 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lu, X.: The Boltzmann equation for Bose–Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119, 1027–1067 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Park, S.-C., Krug, J.: Evolution in random fitness landscapes: the infinite sites model. J. Stat. Mech. Theory Exp. 4, P04014 (2008)Google Scholar
  15. 15.
    Spohn, H.: Kinetics of the Bose–Einstein condensation. Phys. D Nonlinear Phenom. 239, 627–634 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Yuan, L.: A generalization of Kingman’s model of selection and mutation and the Lenski experiment. Math. Biosci. 285, 61–67 (2017)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich MathematikTU DarmstadtDarmstadtGermany
  2. 2.Institut für mathemtaische StochastikUniversität MünsterMunsterGermany
  3. 3.Mathematisches InstitutUniversität zu KölnCologneGermany

Personalised recommendations