Annales Henri Poincaré

, Volume 19, Issue 5, pp 1419–1438 | Cite as

Topological Resonances on Quantum Graphs

Article
  • 13 Downloads

Abstract

In this paper, we try to put the results of Smilansky et al. on “Topological resonances” on a mathematical basis. A key role in the asymptotic of resonances near the real axis for Quantum Graphs is played by the set of metrics for which there exist compactly supported eigenfunctions. We give several estimates on the dimension of this semi-algebraic set, in particular in terms of the girth of the graph. The case of trees is also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barra, F., Gaspard, P.: On the level spacing distribution in quantum graphs. J. Stat. Phys. 101, 283–319 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barra, F., Gaspard, P.: Classical dynamics on graphs. Phys. Rev. E 63, 066215 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs, vol. 186. AMS, Providence (2013)MATHGoogle Scholar
  4. 4.
    Berkolaiko, G., Liu, W.: Simplicity of eigenvalues and non-vanishing of eigenfunctions of a quantum graph. J. Math. Anal. Appl. 455, 803–818 (2016)MathSciNetMATHGoogle Scholar
  5. 5.
    Berkolaiko, G., Winn, B.: Relationship between scattering matrix and spectrum of quantum graphs. Trans. AMS 362, 6261–6277 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36. Springer, Berlin (1998)Google Scholar
  7. 7.
    Colin de Verdière, Y.: Semi-classical measures on quantum graphs and the Gauß map of the determinant manifold. Ann. Henri Poincaré 16, 347–364 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Davies, E.B., Pushnitski, A.: Non-Weyl resonance asymptotics for quantum graphs. Anal. PDE 4, 729–756 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Exner, P., Lipovský, J.: Equivalence of resolvent and scattering resonances on quantum graphs. Adventures in Mathematical Physics, Contemp. Math., vol. 447, pp. 73–81. American Mathematical Society, Providence, RI (2007)Google Scholar
  10. 10.
    Exner, P., Lipovský, J.: Resonances from perturbations of quantum graphs with rationally related edges. J. Phys. A 43(10), 105301–105321 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gnutzmann, S., Schanz, H., Smilansky, U.: Topological resonances in scattering on networks (graphs). Phys. Rev. Lett. 110, 094101-1–094101-5 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Kottos, T., Smilansky, U.: Chaotic scattering on graphs. Phys. Rev. Lett. 85(5), 968–971 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Kottos, T., Smilansky, U.: Quantum graphs: a simple model for chaotic scattering. J. Phys. A Math. Gen. 36, 3501–3524 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lee, M., Zworski, M.: A Fermi golden rule for quantum graphs. J. Math. Phys. 57, 092101 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Fourier, Unité mixte de recherche CNRS-UJF 5582Université Grenoble-AlpesSaint Martin d’Hères CedexFrance

Personalised recommendations